tensorflow:: ops:: SparseAdd

#include <sparse_ops.h>

Adds two SparseTensor objects to produce another SparseTensor .

The input SparseTensor objects' indices are assumed ordered in standard lexicographic order. If this is not the case, before this step run SparseReorder to restore index ordering.

By default, if two values sum to zero at some index, the output SparseTensor would still include that particular location in its index, storing a zero in the corresponding value slot. To override this, callers can specify thresh , indicating that if the sum has a magnitude strictly smaller than thresh , its corresponding value and index would then not be included. In particular, thresh == 0 (default) means everything is kept and actual thresholding happens only for a positive value.

In the following shapes, nnz is the count after taking thresh into account.

Args:

  • scope: A Scope object
  • a_indices: 2-D. The indices of the first SparseTensor , size [nnz, ndims] Matrix.
  • a_values: 1-D. The values of the first SparseTensor , size [nnz] Vector.
  • a_shape: 1-D. The shape of the first SparseTensor , size [ndims] Vector.
  • b_indices: 2-D. The indices of the second SparseTensor , size [nnz, ndims] Matrix.
  • b_values: 1-D. The values of the second SparseTensor , size [nnz] Vector.
  • b_shape: 1-D. The shape of the second SparseTensor , size [ndims] Vector.
  • thresh: 0-D. The magnitude threshold that determines if an output value/index pair takes space.

Returns:

Constructors and Destructors

SparseAdd (const :: tensorflow::Scope & scope, :: tensorflow::Input a_indices, :: tensorflow::Input a_values, :: tensorflow::Input a_shape, :: tensorflow::Input b_indices, :: tensorflow::Input b_values, :: tensorflow::Input b_shape, :: tensorflow::Input thresh)

Public attributes

operation

Operation operation

sum_indices

::tensorflow::Output sum_indices

sum_shape

::tensorflow::Output sum_shape

sum_values

::tensorflow::Output sum_values

Public functions

SparseAdd

 SparseAdd(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input a_indices,
  ::tensorflow::Input a_values,
  ::tensorflow::Input a_shape,
  ::tensorflow::Input b_indices,
  ::tensorflow::Input b_values,
  ::tensorflow::Input b_shape,
  ::tensorflow::Input thresh
)