Оптимизируйте свои подборки
Сохраняйте и классифицируйте контент в соответствии со своими настройками.
тензорный поток:: опс:: Пример анализа
#include <parsing_ops.h>
Преобразует вектор мозга. Пример прото (в виде строк) в типизированные тензоры.
Краткое содержание
Аргументы:
- область: объект области.
- сериализованный: вектор, содержащий пакет двоичных сериализованных примеров прототипов.
- имена: вектор, содержащий имена сериализованных прото. Может содержать, например, имена табличных ключей (описательные) для соответствующих сериализованных прототипов. Они полезны исключительно для целей отладки, и наличие здесь значений не влияет на вывод. Также может быть пустым вектором, если имена недоступны. Если этот вектор не пуст, этот вектор должен иметь ту же длину, что и «сериализованный».
- sparse_keys: список тензоров (скаляров) строк Nsparse. Ключи, ожидаемые в функциях примеров, связаны с разреженными значениями.
- Densent_keys: список тензоров (скаляров) Ndense строк. Ключи, ожидаемые в функциях примеров, связаны с плотными значениями.
- Densent_defaults: список Ndense Tensors (некоторые могут быть пустыми). Densent_defaults[j] предоставляет значения по умолчанию, когда в Feature_map примера отсутствует Density_key[j]. Если для Density_defaults[j] указан пустой тензор , то требуется функция Density_keys[j]. Тип ввода выводится из Density_defaults[j], даже если он пуст. Если Densent_defaults[j] не пуст, а Densent_shapes[j] полностью определен, то форма Densent_defaults[j] должна соответствовать форме Densent_Shapes[j]. Если Densent_shapes[j] имеет неопределенный основной размер (функция плотности переменных шагов), Densent_defaults[j] должен содержать один элемент: элемент заполнения.
- sparse_types: список типов Nsparse; типы данных в каждой функции, указанные в sparse_keys. В настоящее время ParseExample поддерживает DT_FLOAT (FloatList), DT_INT64 (Int64List) и DT_STRING (BytesList).
- Densent_shapes: список фигур Ndense; формы данных в каждой функции, заданные в Density_keys. Количество элементов в объекте, соответствующем Densent_key[j], всегда должно равняться Densent_shapes[j].NumEntries(). Если Density_shapes[j] == (D0, D1, ..., DN), то форма выходных данных Tensor Density_values[j] будет (|serialized|, D0, D1, ..., DN): Плотные выходные данные только входные данные, сгруппированные по строкам. Это работает для Densent_shapes[j] = (-1, D1, ..., DN). В этом случае форма вывода Tensor Densent_values[j] будет иметь вид (|serialized|, M, D1, .., DN), где M — максимальное количество блоков элементов длины D1 * .... * DN. , по всем записям мини-пакета во входных данных. Любая запись мини-пакета, содержащая менее M блоков элементов длиной D1 * ... * DN, будет дополнена соответствующим скалярным элементом default_value по второму измерению.
Возврат:
-
OutputList
разреженных_индисов -
OutputList
разреженных_значений -
OutputList
разреженных_форм -
OutputList
плотных_значений
Публичные атрибуты
Общественные функции
Если не указано иное, контент на этой странице предоставляется по лицензии Creative Commons "С указанием авторства 4.0", а примеры кода – по лицензии Apache 2.0. Подробнее об этом написано в правилах сайта. Java – это зарегистрированный товарный знак корпорации Oracle и ее аффилированных лиц.
Последнее обновление: 2025-07-27 UTC.
[null,null,["Последнее обновление: 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::ParseExample Class Reference\n\ntensorflow::ops::ParseExample\n=============================\n\n`#include \u003cparsing_ops.h\u003e`\n\nTransforms a vector of brain.Example protos (as strings) into typed tensors.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- serialized: A vector containing a batch of binary serialized Example protos.\n- names: A vector containing the names of the serialized protos. May contain, for example, table key (descriptive) names for the corresponding serialized protos. These are purely useful for debugging purposes, and the presence of values here has no effect on the output. May also be an empty vector if no names are available. If non-empty, this vector must be the same length as \"serialized\".\n- sparse_keys: A list of Nsparse string Tensors (scalars). The keys expected in the Examples' features associated with sparse values.\n- dense_keys: A list of Ndense string Tensors (scalars). The keys expected in the Examples' features associated with dense values.\n- dense_defaults: A list of Ndense Tensors (some may be empty). dense_defaults\\[j\\] provides default values when the example's feature_map lacks dense_key\\[j\\]. If an empty [Tensor](/versions/r2.2/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) is provided for dense_defaults\\[j\\], then the Feature dense_keys\\[j\\] is required. The input type is inferred from dense_defaults\\[j\\], even when it's empty. If dense_defaults\\[j\\] is not empty, and dense_shapes\\[j\\] is fully defined, then the shape of dense_defaults\\[j\\] must match that of dense_shapes\\[j\\]. If dense_shapes\\[j\\] has an undefined major dimension (variable strides dense feature), dense_defaults\\[j\\] must contain a single element: the padding element.\n- sparse_types: A list of Nsparse types; the data types of data in each Feature given in sparse_keys. Currently the [ParseExample](/versions/r2.2/api_docs/cc/class/tensorflow/ops/parse-example#classtensorflow_1_1ops_1_1_parse_example) supports DT_FLOAT (FloatList), DT_INT64 (Int64List), and DT_STRING (BytesList).\n- dense_shapes: A list of Ndense shapes; the shapes of data in each Feature given in dense_keys. The number of elements in the Feature corresponding to dense_key\\[j\\] must always equal dense_shapes\\[j\\].NumEntries(). If dense_shapes\\[j\\] == (D0, D1, ..., DN) then the shape of output [Tensor](/versions/r2.2/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) dense_values\\[j\\] will be (\\|serialized\\|, D0, D1, ..., DN): The dense outputs are just the inputs row-stacked by batch. This works for dense_shapes\\[j\\] = (-1, D1, ..., DN). In this case the shape of the output [Tensor](/versions/r2.2/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) dense_values\\[j\\] will be (\\|serialized\\|, M, D1, .., DN), where M is the maximum number of blocks of elements of length D1 \\* .... \\* DN, across all minibatch entries in the input. [Any](/versions/r2.2/api_docs/cc/class/tensorflow/ops/any#classtensorflow_1_1ops_1_1_any) minibatch entry with less than M blocks of elements of length D1 \\* ... \\* DN will be padded with the corresponding default_value scalar element along the second dimension.\n\n\u003cbr /\u003e\n\nReturns:\n\n- `OutputList` sparse_indices\n- `OutputList` sparse_values\n- `OutputList` sparse_shapes\n- `OutputList` dense_values\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ParseExample](#classtensorflow_1_1ops_1_1_parse_example_1abe97c3d8689593c4b7fc474df7232628)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` serialized, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` names, ::`[tensorflow::InputList](/versions/r2.2/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` sparse_keys, ::`[tensorflow::InputList](/versions/r2.2/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` dense_keys, ::`[tensorflow::InputList](/versions/r2.2/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` dense_defaults, const DataTypeSlice & sparse_types, const gtl::ArraySlice\u003c PartialTensorShape \u003e & dense_shapes)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|\n| [dense_values](#classtensorflow_1_1ops_1_1_parse_example_1a0621ad91c166916f20c4d8d38da78674) | `::`[tensorflow::OutputList](/versions/r2.2/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [operation](#classtensorflow_1_1ops_1_1_parse_example_1a68504c285f005f993b30252db06fbee0) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [sparse_indices](#classtensorflow_1_1ops_1_1_parse_example_1a9f9016a149620b00fad16bff88591905) | `::`[tensorflow::OutputList](/versions/r2.2/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [sparse_shapes](#classtensorflow_1_1ops_1_1_parse_example_1a39e169f2156ee03b9755c6e4b7bf9641) | `::`[tensorflow::OutputList](/versions/r2.2/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [sparse_values](#classtensorflow_1_1ops_1_1_parse_example_1a39241716b69f84112f769ddf426c1a02) | `::`[tensorflow::OutputList](/versions/r2.2/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n\nPublic attributes\n-----------------\n\n### dense_values\n\n```scdoc\n::tensorflow::OutputList dense_values\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\n### sparse_indices\n\n```scdoc\n::tensorflow::OutputList sparse_indices\n``` \n\n### sparse_shapes\n\n```scdoc\n::tensorflow::OutputList sparse_shapes\n``` \n\n### sparse_values\n\n```scdoc\n::tensorflow::OutputList sparse_values\n``` \n\nPublic functions\n----------------\n\n### ParseExample\n\n```gdscript\n ParseExample(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input serialized,\n ::tensorflow::Input names,\n ::tensorflow::InputList sparse_keys,\n ::tensorflow::InputList dense_keys,\n ::tensorflow::InputList dense_defaults,\n const DataTypeSlice & sparse_types,\n const gtl::ArraySlice\u003c PartialTensorShape \u003e & dense_shapes\n)\n```"]]