Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: Acosh
#include <math_ops.h>
Menghitung kosinus hiperbolik terbalik dari elemen x.
Ringkasan
Dengan adanya tensor masukan, fungsi tersebut menghitung kosinus hiperbolik terbalik dari setiap elemen. Rentang masukan adalah [1, inf]
. Ia mengembalikan nan
jika input berada di luar rentang.
x = tf.constant([-2, -0.5, 1, 1.2, 200, 10000, float("inf")])
tf.math.acosh(x) ==> [nan nan 0. 0.62236255 5.9914584 9.903487 inf]
Argumen:
Pengembalian:
Atribut publik
Fungsi publik
simpul
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Keluaran
operator::tensorflow::Output() const
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::Acosh Class Reference\n\ntensorflow::ops::Acosh\n======================\n\n`#include \u003cmath_ops.h\u003e`\n\nComputes inverse hyperbolic cosine of x element-wise.\n\nSummary\n-------\n\nGiven an input tensor, the function computes inverse hyperbolic cosine of every element. [Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input) range is `[1, inf]`. It returns `nan` if the input lies outside the range.\n\n\n```gdscript\nx = tf.constant([-2, -0.5, 1, 1.2, 200, 10000, float(\"inf\")])\ntf.math.acosh(x) ==\u003e [nan nan 0. 0.62236255 5.9914584 9.903487 inf]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The y tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Acosh](#classtensorflow_1_1ops_1_1_acosh_1a31b3474b5d1e71240fe6088301abf0a5)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` x)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_acosh_1aa991cae2b2e8e5c5ba714a927be34d8c) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [y](#classtensorflow_1_1ops_1_1_acosh_1a5afe6daf80428d88039349ebf210c1cf) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_acosh_1a21ed3b868b1295f99f00438352ce0ac9)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_acosh_1a45294a289edf40798c124ba4de38e96c)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_acosh_1a10bde9ae4d7770247d77d86b34da6752)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### y\n\n```text\n::tensorflow::Output y\n``` \n\nPublic functions\n----------------\n\n### Acosh\n\n```gdscript\n Acosh(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input x\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]