Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: Buat ember
#include <math_ops.h>
Mengelompokkan 'masukan' berdasarkan 'batas'.
Ringkasan
Misalnya, jika masukannya berupa batasan = [0, 10, 100] masukan = [[-5, 10000] [150, 10] [5, 100]]
maka keluarannya adalah keluaran = [[0, 3] [3, 2] [1, 3]]
Argumen:
- ruang lingkup: Objek Lingkup
- input: Segala bentuk Tensor berisi tipe int atau float.
- batas: Daftar pelampung yang diurutkan memberikan batas keranjang.
Pengembalian:
-
Output
: Bentuknya sama dengan 'input', setiap nilai input diganti dengan indeks bucket.
(numpy) Setara dengan np.digitize.
Atribut publik
Fungsi publik
simpul
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Keluaran
operator::tensorflow::Output() const
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::Bucketize Class Reference\n\ntensorflow::ops::Bucketize\n==========================\n\n`#include \u003cmath_ops.h\u003e`\n\nBucketizes 'input' based on 'boundaries'.\n\nSummary\n-------\n\nFor example, if the inputs are boundaries = \\[0, 10, 100\\] input = \\[\\[-5, 10000\\] \\[150, 10\\] \\[5, 100\\]\\]\n\nthen the output will be output = \\[\\[0, 3\\] \\[3, 2\\] \\[1, 3\\]\\]\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: [Any](/versions/r2.3/api_docs/cc/class/tensorflow/ops/any#classtensorflow_1_1ops_1_1_any) shape of [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) contains with int or float type.\n- boundaries: A sorted list of floats gives the boundary of the buckets.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Same shape with 'input', each value of input replaced with bucket index.\n\n\u003cbr /\u003e\n\n(numpy) Equivalent to np.digitize.\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Bucketize](#classtensorflow_1_1ops_1_1_bucketize_1a104987760896f84594d21a17738a6fe1)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, const gtl::ArraySlice\u003c float \u003e & boundaries)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_bucketize_1a11d9d7e39578db3e3dfaf2ef9213ae34) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_bucketize_1aa111bb19d459f3f26ae8f03297739125) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_bucketize_1af82e929e268a0301d7ce4c41480a19e4)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_bucketize_1a7d66691237f8de46ab0c52782419cf53)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_bucketize_1aa3f697a162b180d9aa7847cb7d22dc3e)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Bucketize\n\n```gdscript\n Bucketize(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n const gtl::ArraySlice\u003c float \u003e & boundaries\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]