Оптимизируйте свои подборки
Сохраняйте и классифицируйте контент в соответствии со своими настройками.
тензорный поток:: опс:: КвантизированныйConv2D
#include <nn_ops.h>
Вычисляет 2D-свертку с учетом квантованного 4D-входа и тензоров фильтра.
Краткое содержание
Входные данные представляют собой квантованные тензоры, где наименьшее значение представляет собой действительное число соответствующего минимума, а наибольшее — максимум. Это означает, что вы можете интерпретировать квантованный вывод таким же образом, принимая во внимание возвращаемые минимальные и максимальные значения.
Аргументы:
- область: объект области.
- фильтр: размер входной_глубины фильтра должен совпадать с размерами глубины входных данных.
- min_input: значение с плавающей запятой, которое представляет наименьшее квантованное входное значение.
- max_input: значение с плавающей запятой, которое представляет наибольшее квантованное входное значение.
- min_filter: значение с плавающей запятой, которое представляет наименьшее значение квантованного фильтра.
- max_filter: значение с плавающей запятой, которое представляет наибольшее значение квантованного фильтра.
- шаги: шаг скользящего окна для каждого измерения входного тензора.
- дополнение: тип используемого алгоритма заполнения.
Необязательные атрибуты (см. Attrs
):
- расширения: одномерный тензор длины 4. Коэффициент расширения для каждого измерения
input
. Если установлено значение k > 1, между каждым фильтрующим элементом в этом измерении будет k-1 пропущенных ячеек. Порядок измерений определяется значением data_format
, подробности см. выше. Расширения размеров партии и глубины должны быть равны 1.
Возврат:
-
Output
выход -
Output
min_output: значение с плавающей запятой, которое представляет наименьшее квантованное выходное значение. -
Output
max_output: значение с плавающей запятой, которое представляет наибольшее квантованное выходное значение.
Конструкторы и деструкторы |
---|
QuantizedConv2D (const :: tensorflow::Scope & scope, :: tensorflow::Input input, :: tensorflow::Input filter, :: tensorflow::Input min_input, :: tensorflow::Input max_input, :: tensorflow::Input min_filter, :: tensorflow::Input max_filter, const gtl::ArraySlice< int > & strides, StringPiece padding)
|
QuantizedConv2D (const :: tensorflow::Scope & scope, :: tensorflow::Input input, :: tensorflow::Input filter, :: tensorflow::Input min_input, :: tensorflow::Input max_input, :: tensorflow::Input min_filter, :: tensorflow::Input max_filter, const gtl::ArraySlice< int > & strides, StringPiece padding, const QuantizedConv2D::Attrs & attrs) |
Публичные статические функции |
---|
Dilations (const gtl::ArraySlice< int > & x) | |
OutType (DataType x) | |
Публичные атрибуты
Общественные функции
Публичные статические функции
Расширения
Attrs Dilations(
const gtl::ArraySlice< int > & x
)
OutType
Attrs OutType(
DataType x
)
Если не указано иное, контент на этой странице предоставляется по лицензии Creative Commons "С указанием авторства 4.0", а примеры кода – по лицензии Apache 2.0. Подробнее об этом написано в правилах сайта. Java – это зарегистрированный товарный знак корпорации Oracle и ее аффилированных лиц.
Последнее обновление: 2025-07-27 UTC.
[null,null,["Последнее обновление: 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::QuantizedConv2D Class Reference\n\ntensorflow::ops::QuantizedConv2D\n================================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes a 2D convolution given quantized 4D input and filter tensors.\n\nSummary\n-------\n\nThe inputs are quantized tensors where the lowest value represents the real number of the associated minimum, and the highest represents the maximum. This means that you can only interpret the quantized output in the same way, by taking the returned minimum and maximum values into account.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- filter: filter's input_depth dimension must match input's depth dimensions.\n- min_input: The float value that the lowest quantized input value represents.\n- max_input: The float value that the highest quantized input value represents.\n- min_filter: The float value that the lowest quantized filter value represents.\n- max_filter: The float value that the highest quantized filter value represents.\n- strides: The stride of the sliding window for each dimension of the input tensor.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/quantized-conv2-d/attrs#structtensorflow_1_1ops_1_1_quantized_conv2_d_1_1_attrs)):\n\n- dilations: 1-D tensor of length 4. The dilation factor for each dimension of `input`. If set to k \\\u003e 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) min_output: The float value that the lowest quantized output value represents.\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) max_output: The float value that the highest quantized output value represents.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [QuantizedConv2D](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1a8376b9a3557650a011f9c6edb484ec8b)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_filter, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_filter, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n| [QuantizedConv2D](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1aa852757615972228954f6d67b3bb8d59)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_filter, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_filter, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding, const `[QuantizedConv2D::Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/quantized-conv2-d/attrs#structtensorflow_1_1ops_1_1_quantized_conv2_d_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [max_output](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1a66d14c5a2888abbc7ae9e711a2fdced8) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [min_output](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1aac559559eda7e4da378605b1b88d3320) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1a36cc12c83f91d1503e6cdeadc7e43272) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1af1401fc53bb8d0556a50807c662bbd61) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public static functions ||\n|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|\n| [Dilations](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1ae5e27c80b00ace7bafa06479bc01ac5e)`(const gtl::ArraySlice\u003c int \u003e & x)` | [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/quantized-conv2-d/attrs#structtensorflow_1_1ops_1_1_quantized_conv2_d_1_1_attrs) |\n| [OutType](#classtensorflow_1_1ops_1_1_quantized_conv2_d_1ad52eb17c8042ea7f90ded915f9f2aa53)`(DataType x)` | [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/quantized-conv2-d/attrs#structtensorflow_1_1ops_1_1_quantized_conv2_d_1_1_attrs) |\n\n| ### Structs ||\n|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::QuantizedConv2D::Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/quantized-conv2-d/attrs) | Optional attribute setters for [QuantizedConv2D](/versions/r2.3/api_docs/cc/class/tensorflow/ops/quantized-conv2-d#classtensorflow_1_1ops_1_1_quantized_conv2_d). |\n\nPublic attributes\n-----------------\n\n### max_output\n\n```scdoc\n::tensorflow::Output max_output\n``` \n\n### min_output\n\n```scdoc\n::tensorflow::Output min_output\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### QuantizedConv2D\n\n```gdscript\n QuantizedConv2D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input filter,\n ::tensorflow::Input min_input,\n ::tensorflow::Input max_input,\n ::tensorflow::Input min_filter,\n ::tensorflow::Input max_filter,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### QuantizedConv2D\n\n```gdscript\n QuantizedConv2D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input filter,\n ::tensorflow::Input min_input,\n ::tensorflow::Input max_input,\n ::tensorflow::Input min_filter,\n ::tensorflow::Input max_filter,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding,\n const QuantizedConv2D::Attrs & attrs\n)\n``` \n\nPublic static functions\n-----------------------\n\n### Dilations\n\n```gdscript\nAttrs Dilations(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n``` \n\n### OutType\n\n```text\nAttrs OutType(\n DataType x\n)\n```"]]