Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: QuantizedMaxPool
#include <nn_ops.h>
Menghasilkan kumpulan maksimal tensor masukan untuk tipe terkuantisasi.
Ringkasan
Argumen:
- ruang lingkup: Objek Lingkup
- masukan: Tensor 4D (batch x baris x kolom x kedalaman) ke MaxReduce.
- min_input: Nilai float yang diwakili oleh nilai input terkuantisasi terendah.
- max_input: Nilai float yang diwakili oleh nilai input terkuantisasi tertinggi.
- ksize : Ukuran jendela untuk setiap dimensi tensor masukan. Panjangnya harus 4 agar sesuai dengan jumlah dimensi masukan.
- langkah: Langkah jendela geser untuk setiap dimensi tensor masukan. Panjangnya harus 4 agar sesuai dengan jumlah dimensi masukan.
- padding: Jenis algoritma padding yang akan digunakan.
Pengembalian:
- keluaran
Output
-
Output
min_output: Nilai float yang diwakili oleh nilai output terkuantisasi terendah. -
Output
max_output: Nilai float yang diwakili oleh nilai output terkuantisasi tertinggi.
Atribut publik
Fungsi publik
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-27 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::QuantizedMaxPool Class Reference\n\ntensorflow::ops::QuantizedMaxPool\n=================================\n\n`#include \u003cnn_ops.h\u003e`\n\nProduces the max pool of the input tensor for quantized types.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: The 4D (batch x rows x cols x depth) [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) to MaxReduce over.\n- min_input: The float value that the lowest quantized input value represents.\n- max_input: The float value that the highest quantized input value represents.\n- ksize: The size of the window for each dimension of the input tensor. The length must be 4 to match the number of dimensions of the input.\n- strides: The stride of the sliding window for each dimension of the input tensor. The length must be 4 to match the number of dimensions of the input.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) min_output: The float value that the lowest quantized output value represents.\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) max_output: The float value that the highest quantized output value represents.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [QuantizedMaxPool](#classtensorflow_1_1ops_1_1_quantized_max_pool_1a817be0a7d6031a29bfef90a7f6023303)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_input, const gtl::ArraySlice\u003c int \u003e & ksize, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [max_output](#classtensorflow_1_1ops_1_1_quantized_max_pool_1a449b1e9df9edeb0d3e25f5278613d66b) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [min_output](#classtensorflow_1_1ops_1_1_quantized_max_pool_1a27a311ff8aac56151f4ca19baf971c7d) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_quantized_max_pool_1a1321affccc07bb31594f255110100b82) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_quantized_max_pool_1a00495fa3c67e8252fa428cdd47740e3d) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### max_output\n\n```scdoc\n::tensorflow::Output max_output\n``` \n\n### min_output\n\n```scdoc\n::tensorflow::Output min_output\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### QuantizedMaxPool\n\n```gdscript\n QuantizedMaxPool(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input min_input,\n ::tensorflow::Input max_input,\n const gtl::ArraySlice\u003c int \u003e & ksize,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n```"]]