Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: Relu
#include <nn_ops.h>
Menghitung linier yang diperbaiki: max(features, 0)
.
Ringkasan
Lihat: https://en.wikipedia.org/wiki/Rectifier_(neural_networks) Contoh penggunaan: tf.nn.relu([-2., 0., -0., 3.]).numpy() array([ 0., 0., -0., 3.], tipe d=float32)
Argumen:
Pengembalian:
Atribut publik
Fungsi publik
simpul
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Keluaran
operator::tensorflow::Output() const
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-27 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::Relu Class Reference\n\ntensorflow::ops::Relu\n=====================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes rectified linear: `max(features, 0)`.\n\nSummary\n-------\n\nSee: \u003chttps://en.wikipedia.org/wiki/Rectifier_(neural_networks)\u003e Example usage: tf.nn.relu(\\[-2., 0., -0., 3.\\]).numpy() array(\\[ 0., 0., -0., 3.\\], dtype=float32)\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The activations tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Relu](#classtensorflow_1_1ops_1_1_relu_1a7803b4543ea4326b15bc124318a0337d)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` features)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [activations](#classtensorflow_1_1ops_1_1_relu_1a8844d0073c49f446320702a327c3bc59) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_relu_1aa2b9226933d48b88974932125f5790c5) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_relu_1a4aa527ed3a2a511b20af65389a580d7f)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_relu_1adb54d55892d25f2861881dd18f013718)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_relu_1acdac2b75ed23e065a9ba239d8c70e090)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### activations\n\n```text\n::tensorflow::Output activations\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### Relu\n\n```gdscript\n Relu(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input features\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]