tensorflow::ops::SparseApplyFtrlV2
#include <training_ops.h>
Update relevant entries in '*var' according to the Ftrl-proximal scheme.
Summary
That is for rows we have grad for, we update var, accum and linear as follows: grad_with_shrinkage = grad + 2 * l2_shrinkage * var accum_new = accum + grad * grad linear += grad_with_shrinkage - (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var quadratic = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2 var = (sign(linear) * l1 - linear) / quadratic if |linear| > l1 else 0.0 accum = accum_new
Args:
- scope: A Scope object
- var: Should be from a Variable().
- accum: Should be from a Variable().
- linear: Should be from a Variable().
- grad: The gradient.
- indices: A vector of indices into the first dimension of var and accum.
- lr: Scaling factor. Must be a scalar.
- l1: L1 regularization. Must be a scalar.
- l2: L2 shrinkage regularization. Must be a scalar.
- lr_power: Scaling factor. Must be a scalar.
Optional attributes (see Attrs
):
- use_locking: If
True
, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
Returns:
Output
: Same as "var".
Constructors and Destructors |
|
---|---|
SparseApplyFtrlV2(const ::
|
|
SparseApplyFtrlV2(const ::
|
Public functions |
|
---|---|
node() const
|
::tensorflow::Node *
|
operator::tensorflow::Input() const
|
|
operator::tensorflow::Output() const
|
|
Public static functions |
|
---|---|
MultiplyLinearByLr(bool x)
|
|
UseLocking(bool x)
|
Structs |
|
---|---|
tensorflow:: |
Optional attribute setters for SparseApplyFtrlV2. |
Public attributes
operation
Operation operation
out
::tensorflow::Output out
Public functions
SparseApplyFtrlV2
SparseApplyFtrlV2( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input l2_shrinkage, ::tensorflow::Input lr_power )
SparseApplyFtrlV2
SparseApplyFtrlV2( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input l2_shrinkage, ::tensorflow::Input lr_power, const SparseApplyFtrlV2::Attrs & attrs )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Public static functions
MultiplyLinearByLr
Attrs MultiplyLinearByLr( bool x )
UseLocking
Attrs UseLocking( bool x )