Returns the default evaluators for use in ExtractAndEvaluate.
tfma.default_evaluators(
eval_shared_model: Optional[tfma.types.EvalSharedModel
] = None,
eval_config: Optional[tfma.EvalConfig
] = None,
schema: Optional[schema_pb2.Schema] = None,
compute_confidence_intervals: Optional[bool] = False,
min_slice_size: int = 1,
serialize: bool = False,
random_seed_for_testing: Optional[int] = None,
config_version: Optional[int] = None
) -> List[tfma.evaluators.Evaluator
]
Args |
eval_shared_model
|
Optional shared model (single-model evaluation) or list
of shared models (multi-model evaluation). Only required if there are
metrics to be computed in-graph using the model.
|
eval_config
|
Eval config.
|
schema
|
A schema to use for customizing default evaluators.
|
compute_confidence_intervals
|
Deprecated (use eval_config).
|
min_slice_size
|
Deprecated (use eval_config).
|
serialize
|
Deprecated.
|
random_seed_for_testing
|
Provide for deterministic tests only.
|
config_version
|
Optional config version for this evaluation. This should not
be explicitly set by users. It is only intended to be used in cases where
the provided eval_config was generated internally, and thus not a reliable
indicator of user intent.
|