Returns default metric specs for multi-class classification problems.
tfma.metrics.default_multi_class_classification_specs(
model_names: Optional[List[str]] = None,
output_names: Optional[List[str]] = None,
output_weights: Optional[Dict[str, float]] = None,
binarize: Optional[tfma.BinarizationOptions
] = None,
aggregate: Optional[tfma.AggregationOptions
] = None,
sparse: bool = True
) -> List[tfma.MetricsSpec
]
Args |
model_names
|
Optional model names if multi-model evaluation.
|
output_names
|
Optional list of output names (if multi-output model).
|
output_weights
|
Optional output weights for creating overall metric
aggregated across outputs (if multi-output model). If a weight is not
provided for an output, it's weight defaults to 0.0 (i.e. output ignored).
|
binarize
|
Optional settings for binarizing multi-class/multi-label metrics.
|
aggregate
|
Optional settings for aggregating multi-class/multi-label
metrics.
|
sparse
|
True if the labels are sparse.
|