|  View source on GitHub | 
Calculates the true postive for semantic segmentation.
Inherits From: Metric
tfma.metrics.SemanticSegmentationTruePositive(
    class_ids: List[int],
    ground_truth_key: str,
    prediction_key: str,
    decode_ground_truth: bool = True,
    decode_prediction: bool = False,
    ignore_ground_truth_id: Optional[int] = None,
    name: Optional[str] = None
)
Methods
computations
computations(
    eval_config: Optional[tfma.EvalConfig] = None,
    schema: Optional[schema_pb2.Schema] = None,
    model_names: Optional[List[str]] = None,
    output_names: Optional[List[str]] = None,
    sub_keys: Optional[List[Optional[SubKey]]] = None,
    aggregation_type: Optional[AggregationType] = None,
    class_weights: Optional[Dict[int, float]] = None,
    example_weighted: bool = False,
    query_key: Optional[str] = None
) -> tfma.metrics.MetricComputations
Creates computations associated with metric.
from_config
@classmethodfrom_config( config: Dict[str, Any] ) -> 'Metric'
get_config
get_config() -> Dict[str, Any]
Returns serializable config.