View source on GitHub
|
Module level imports for tensorflow_transform.experimental.
Classes
class CacheablePTransformAnalyzer: A PTransformAnalyzer which enables analyzer cache.
class PTransformAnalyzerCacheCoder: A coder iterface for encoding and decoding cache items.
class SimpleJsonPTransformAnalyzerCacheCoder: An accumulator cache coder that can handle lists.
Functions
annotate_sparse_output_shape(...): Annotates a sparse output to have a given dense_shape.
annotate_true_sparse_output(...): Annotates a sparse output to be truely sparse and not varlen.
approximate_vocabulary(...): Computes the unique values of a Tensor over the whole dataset.
compute_and_apply_approximate_vocabulary(...): Generates an approximate vocabulary for x and maps it to an integer.
document_frequency(...): Maps the terms in x to their document frequency in the same order.
get_vocabulary_size_by_name(...): Gets the size of a vocabulary created using tft.vocabulary.
idf(...): Maps the terms in x to their inverse document frequency in the same order.
ptransform_analyzer(...): Applies a user-provided PTransform over the whole dataset.
View source on GitHub