tfma.load_eval_result
Stay organized with collections
Save and categorize content based on your preferences.
Loads EvalResult object for use with the visualization functions.
tfma.load_eval_result(
output_path: str,
output_file_format: Optional[str] = 'tfrecord',
model_name: Optional[str] = None
) -> tfma.EvalResult
Used in the notebooks
Args |
output_path
|
Output directory containing config, metrics, plots, etc.
|
output_file_format
|
Optional file extension to filter files by.
|
model_name
|
Optional model name. Required if multi-model evaluation was run.
|
Returns |
EvalResult object for use with the visualization functions.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tfma.load_eval_result\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/model-analysis/blob/v0.46.0/tensorflow_model_analysis/api/model_eval_lib.py#L303-L361) |\n\nLoads EvalResult object for use with the visualization functions. \n\n tfma.load_eval_result(\n output_path: str,\n output_file_format: Optional[str] = 'tfrecord',\n model_name: Optional[str] = None\n ) -\u003e ../tfma/EvalResult\n\n### Used in the notebooks\n\n| Used in the tutorials |\n|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| - [FaceSSD Fairness Indicators Example Colab](https://www.tensorflow.org/responsible_ai/fairness_indicators/tutorials/Facessd_Fairness_Indicators_Example_Colab) - [Introduction to Fairness Indicators](https://www.tensorflow.org/responsible_ai/fairness_indicators/tutorials/Fairness_Indicators_Example_Colab) - [TensorFlow Constrained Optimization Example Using CelebA Dataset](https://www.tensorflow.org/responsible_ai/fairness_indicators/tutorials/Fairness_Indicators_TFCO_CelebA_Case_Study) - [Wiki Talk Comments Toxicity Prediction](https://www.tensorflow.org/responsible_ai/fairness_indicators/tutorials/Fairness_Indicators_TFCO_Wiki_Case_Study) - [Fairness Indicators on TF-Hub Text Embeddings](https://www.tensorflow.org/responsible_ai/fairness_indicators/tutorials/Fairness_Indicators_on_TF_Hub_Text_Embeddings) |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------------------|------------------------------------------------------------------|\n| `output_path` | Output directory containing config, metrics, plots, etc. |\n| `output_file_format` | Optional file extension to filter files by. |\n| `model_name` | Optional model name. Required if multi-model evaluation was run. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| EvalResult object for use with the visualization functions. ||\n\n\u003cbr /\u003e"]]