tfma.metrics.BooleanFlipRates
Stay organized with collections
Save and categorize content based on your preferences.
FlipRate is the rate at which predictions between models switch.
Inherits From: Metric
tfma.metrics.BooleanFlipRates(
threshold: float = _DEFAULT_FLIP_RATE_THRESHOLD,
flip_rate_name: str = FLIP_RATE_NAME,
neg_to_neg_flip_rate_name: str = NEG_TO_NEG_FLIP_RATE_NAME,
neg_to_pos_flip_rate_name: str = NEG_TO_POS_FLIP_RATE_NAME,
pos_to_neg_flip_rate_name: str = POS_TO_NEG_FLIP_RATE_NAME,
pos_to_pos_flip_rate_name: str = POS_TO_POS_FLIP_RATE_NAME
)
Given a pair of models and a threshold for converting continuous model outputs
into boolean predictions, this metric will produce three numbers (keyed by
separate MetricKeys):
- (symmetric) flip rate: The number of times the boolean predictions don't
match, regardless of the direction of the flip.
- negative-to-positive flip rate: The rate at which the baseline model's
boolean prediction is negative but the candidate model's is positive.
- positive-to-negative flip rate: The rate at which the baseline model's
boolean prediction is positive but the candidate model's is negative.
Args |
threshold
|
The threshold to use for converting the model prediction into a
boolean value that can be used for comparison between models.
|
flip_rate_name
|
Metric name for symmetric flip rate.
|
neg_to_neg_flip_rate_name
|
Metric name for the negative-to-negative flip
rate.
|
neg_to_pos_flip_rate_name
|
Metric name for the negative-to-positive flip
rate.
|
pos_to_neg_flip_rate_name
|
Metric name for the positive-to-negative flip
rate.
|
pos_to_pos_flip_rate_name
|
Metric name for the positive-to-positive flip
rate.
|
Attributes |
compute_confidence_interval
|
Whether to compute confidence intervals for this metric.
Note that this may not completely remove the computational overhead
involved in computing a given metric. This is only respected by the
jackknife confidence interval method.
|
Methods
computations
View source
computations(
eval_config: Optional[tfma.EvalConfig
] = None,
schema: Optional[schema_pb2.Schema] = None,
model_names: Optional[List[str]] = None,
output_names: Optional[List[str]] = None,
sub_keys: Optional[List[Optional[SubKey]]] = None,
aggregation_type: Optional[AggregationType] = None,
class_weights: Optional[Dict[int, float]] = None,
example_weighted: bool = False,
query_key: Optional[str] = None
) -> tfma.metrics.MetricComputations
Creates computations associated with metric.
from_config
View source
@classmethod
from_config(
config: Dict[str, Any]
) -> 'Metric'
get_config
View source
get_config() -> Dict[str, Any]
Returns serializable config.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tfma.metrics.BooleanFlipRates\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/model-analysis/blob/v0.46.0/tensorflow_model_analysis/metrics/flip_metrics.py#L568-L616) |\n\nFlipRate is the rate at which predictions between models switch.\n\nInherits From: [`Metric`](../../tfma/metrics/Metric) \n\n tfma.metrics.BooleanFlipRates(\n threshold: float = _DEFAULT_FLIP_RATE_THRESHOLD,\n flip_rate_name: str = FLIP_RATE_NAME,\n neg_to_neg_flip_rate_name: str = NEG_TO_NEG_FLIP_RATE_NAME,\n neg_to_pos_flip_rate_name: str = NEG_TO_POS_FLIP_RATE_NAME,\n pos_to_neg_flip_rate_name: str = POS_TO_NEG_FLIP_RATE_NAME,\n pos_to_pos_flip_rate_name: str = POS_TO_POS_FLIP_RATE_NAME\n )\n\nGiven a pair of models and a threshold for converting continuous model outputs\ninto boolean predictions, this metric will produce three numbers (keyed by\nseparate MetricKeys):\n\n- (symmetric) flip rate: The number of times the boolean predictions don't match, regardless of the direction of the flip.\n- negative-to-positive flip rate: The rate at which the baseline model's boolean prediction is negative but the candidate model's is positive.\n- positive-to-negative flip rate: The rate at which the baseline model's boolean prediction is positive but the candidate model's is negative.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------|\n| `threshold` | The threshold to use for converting the model prediction into a boolean value that can be used for comparison between models. |\n| `flip_rate_name` | Metric name for symmetric flip rate. |\n| `neg_to_neg_flip_rate_name` | Metric name for the negative-to-negative flip rate. |\n| `neg_to_pos_flip_rate_name` | Metric name for the negative-to-positive flip rate. |\n| `pos_to_neg_flip_rate_name` | Metric name for the positive-to-negative flip rate. |\n| `pos_to_pos_flip_rate_name` | Metric name for the positive-to-positive flip rate. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `compute_confidence_interval` | Whether to compute confidence intervals for this metric. \u003cbr /\u003e Note that this may not completely remove the computational overhead involved in computing a given metric. This is only respected by the jackknife confidence interval method. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `computations`\n\n[View source](https://github.com/tensorflow/model-analysis/blob/v0.46.0/tensorflow_model_analysis/metrics/metric_types.py#L862-L888) \n\n computations(\n eval_config: Optional[../../tfma/EvalConfig] = None,\n schema: Optional[schema_pb2.Schema] = None,\n model_names: Optional[List[str]] = None,\n output_names: Optional[List[str]] = None,\n sub_keys: Optional[List[Optional[SubKey]]] = None,\n aggregation_type: Optional[AggregationType] = None,\n class_weights: Optional[Dict[int, float]] = None,\n example_weighted: bool = False,\n query_key: Optional[str] = None\n ) -\u003e ../../tfma/metrics/MetricComputations\n\nCreates computations associated with metric.\n\n### `from_config`\n\n[View source](https://github.com/tensorflow/model-analysis/blob/v0.46.0/tensorflow_model_analysis/metrics/metric_types.py#L842-L847) \n\n @classmethod\n from_config(\n config: Dict[str, Any]\n ) -\u003e 'Metric'\n\n### `get_config`\n\n[View source](https://github.com/tensorflow/model-analysis/blob/v0.46.0/tensorflow_model_analysis/metrics/metric_types.py#L838-L840) \n\n get_config() -\u003e Dict[str, Any]\n\nReturns serializable config."]]