tfma.metrics.CoefficientOfDiscrimination
Stay organized with collections
Save and categorize content based on your preferences.
Coefficient of discrimination metric.
Inherits From: Metric
tfma.metrics.CoefficientOfDiscrimination(
name: str = COEFFICIENT_OF_DISCRIMINATION_NAME
)
The coefficient of discrimination measures the differences between the average
prediction for the positive examples and the average prediction for the
negative examples.
The formula is: AVG(pred | label = 1) - AVG(pred | label = 0)
More details can be found in the following paper:
https://www.tandfonline.com/doi/abs/10.1198/tast.2009.08210
Attributes |
compute_confidence_interval
|
Whether to compute confidence intervals for this metric.
Note that this may not completely remove the computational overhead
involved in computing a given metric. This is only respected by the
jackknife confidence interval method.
|
Methods
computations
View source
computations(
eval_config: Optional[tfma.EvalConfig
] = None,
schema: Optional[schema_pb2.Schema] = None,
model_names: Optional[List[str]] = None,
output_names: Optional[List[str]] = None,
sub_keys: Optional[List[Optional[SubKey]]] = None,
aggregation_type: Optional[AggregationType] = None,
class_weights: Optional[Dict[int, float]] = None,
example_weighted: bool = False,
query_key: Optional[str] = None
) -> tfma.metrics.MetricComputations
Creates computations associated with metric.
from_config
View source
@classmethod
from_config(
config: Dict[str, Any]
) -> 'Metric'
get_config
View source
get_config() -> Dict[str, Any]
Returns serializable config.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tfma.metrics.CoefficientOfDiscrimination\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/model-analysis/blob/v0.46.0/tensorflow_model_analysis/metrics/tjur_discrimination.py#L33-L53) |\n\nCoefficient of discrimination metric.\n\nInherits From: [`Metric`](../../tfma/metrics/Metric) \n\n tfma.metrics.CoefficientOfDiscrimination(\n name: str = COEFFICIENT_OF_DISCRIMINATION_NAME\n )\n\nThe coefficient of discrimination measures the differences between the average\nprediction for the positive examples and the average prediction for the\nnegative examples.\n\nThe formula is: AVG(pred \\| label = 1) - AVG(pred \\| label = 0)\nMore details can be found in the following paper:\n\u003chttps://www.tandfonline.com/doi/abs/10.1198/tast.2009.08210\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------|--------------|\n| `name` | Metric name. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `compute_confidence_interval` | Whether to compute confidence intervals for this metric. \u003cbr /\u003e Note that this may not completely remove the computational overhead involved in computing a given metric. This is only respected by the jackknife confidence interval method. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `computations`\n\n[View source](https://github.com/tensorflow/model-analysis/blob/v0.46.0/tensorflow_model_analysis/metrics/metric_types.py#L862-L888) \n\n computations(\n eval_config: Optional[../../tfma/EvalConfig] = None,\n schema: Optional[schema_pb2.Schema] = None,\n model_names: Optional[List[str]] = None,\n output_names: Optional[List[str]] = None,\n sub_keys: Optional[List[Optional[SubKey]]] = None,\n aggregation_type: Optional[AggregationType] = None,\n class_weights: Optional[Dict[int, float]] = None,\n example_weighted: bool = False,\n query_key: Optional[str] = None\n ) -\u003e ../../tfma/metrics/MetricComputations\n\nCreates computations associated with metric.\n\n### `from_config`\n\n[View source](https://github.com/tensorflow/model-analysis/blob/v0.46.0/tensorflow_model_analysis/metrics/metric_types.py#L842-L847) \n\n @classmethod\n from_config(\n config: Dict[str, Any]\n ) -\u003e 'Metric'\n\n### `get_config`\n\n[View source](https://github.com/tensorflow/model-analysis/blob/v0.46.0/tensorflow_model_analysis/metrics/metric_types.py#L838-L840) \n\n get_config() -\u003e Dict[str, Any]\n\nReturns serializable config."]]