View source on GitHub |
Calculates the mean of squared error between labels and predictions.
Inherits From: Metric
tfma.metrics.MeanSquaredError(
name: str = MEAN_SQUARED_ERROR_NAME
)
Formula: error = L2_norm(label - prediction)**2
The metric computes the mean of squared error (square of L2 norm) between labels and predictions. The labels and predictions could be arrays of arbitrary dimensions. Their dimension should match.
Args | |
---|---|
name
|
The name of the metric. |
Methods
computations
computations(
eval_config: Optional[tfma.EvalConfig
] = None,
schema: Optional[schema_pb2.Schema] = None,
model_names: Optional[List[str]] = None,
output_names: Optional[List[str]] = None,
sub_keys: Optional[List[Optional[SubKey]]] = None,
aggregation_type: Optional[AggregationType] = None,
class_weights: Optional[Dict[int, float]] = None,
example_weighted: bool = False,
query_key: Optional[str] = None
) -> tfma.metrics.MetricComputations
Creates computations associated with metric.
from_config
@classmethod
from_config( config: Dict[str, Any] ) -> 'Metric'
get_config
get_config() -> Dict[str, Any]
Returns serializable config.