View source on GitHub |
Computes the max recall of the predictions with respect to the labels.
Inherits From: MaxRecall
, Recall
, Metric
tfma.metrics.ObjectDetectionMaxRecall(
name: Optional[str] = None,
iou_threshold: Optional[float] = None,
class_id: Optional[int] = None,
class_weight: Optional[float] = None,
area_range: Optional[Tuple[float, float]] = None,
max_num_detections: Optional[int] = None,
labels_to_stack: Optional[List[str]] = None,
predictions_to_stack: Optional[List[str]] = None,
num_detections_key: Optional[str] = None,
allow_missing_key: bool = False
)
The metric uses true positives and false negatives to compute recall by dividing the true positives by the sum of true positives and false negatives.
Effectively the recall at threshold = epsilon(1.0e-12). It is equilvalent to the recall defined in COCO metrics.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
Methods
computations
computations(
eval_config: Optional[tfma.EvalConfig
] = None,
schema: Optional[schema_pb2.Schema] = None,
model_names: Optional[List[str]] = None,
output_names: Optional[List[str]] = None,
sub_keys: Optional[List[Optional[SubKey]]] = None,
aggregation_type: Optional[AggregationType] = None,
class_weights: Optional[Dict[int, float]] = None,
example_weighted: bool = False,
query_key: Optional[str] = None
) -> tfma.metrics.MetricComputations
Creates computations associated with metric.
from_config
@classmethod
from_config( config: Dict[str, Any] ) -> 'Metric'
get_config
get_config() -> Dict[str, Any]
Returns serializable config.
result
result(
tp: float, tn: float, fp: float, fn: float
) -> float
Function for computing metric value from TP, TN, FP, FN values.