View source on GitHub |
Standard inputs used by most metric computations.
tfma.metrics.StandardMetricInputs(
extracts: Optional[tfma.types.Extracts
] = None,
**kwargs
)
StandardMetricInputs is a wrapper around Extracts where only the extracts keys used by one or more ExtractsPreprocessors will be present.
Args | |
---|---|
extracts
|
Reference to existing extracts to use. |
**kwargs
|
Name/value pairs to create new extracts from. Only one of either extracts or kwargs should be used. |
Methods
clear
clear()
D.clear() -> None. Remove all items from D.
get
get(
key, default=None
)
Retrieve the corresponding layout by the string key.
When there isn't an exact match, all the existing keys in the layout map will be treated as a regex and map against the input key again. The first match will be returned, based on the key insertion order. Return None if there isn't any match found.
Args | |
---|---|
key
|
the string key as the query for the layout. |
Returns | |
---|---|
Corresponding layout based on the query. |
get_attributions
get_attributions(
model_name: Optional[str] = None, output_name: Optional[str] = None
) -> Optional[tfma.types.DictOfTensorValueMaybeDict
]
Returns tfma.ATTRIBUTIONS_KEY extract.
get_by_key
get_by_key(
key: str,
model_name: Optional[str] = None,
output_name: Optional[str] = None
) -> Any
Returns item for key possibly filtered by model and/or output names.
get_combined_features
get_combined_features(
model_name: Optional[str] = None
) -> Mapping[str, Any]
Returns a combined extract of transformed features and features.
In case of name collision, transformed features is looked up first and the value is returned when found.
Args | |
---|---|
model_name
|
Optionally, the model name assosicated to the transformed feature. This has no effect on the raw features extract. |
get_example_weights
get_example_weights(
model_name: Optional[str] = None, output_name: Optional[str] = None
) -> Optional[types.TensorValueMaybeMultiLevelDict]
Returns tfma.EXAMPLE_WEIGHTS_KEY extract.
get_features
get_features() -> Optional[tfma.types.DictOfTensorValueMaybeDict
]
Returns tfma.FEATURES_KEY extract.
get_inputs
get_inputs() -> Any
Returns tfma.INPUT_KEY extract.
get_labels
get_labels(
model_name: Optional[str] = None, output_name: Optional[str] = None
) -> Optional[types.TensorValueMaybeMultiLevelDict]
Returns tfma.LABELS_KEY extract.
get_model_and_output_names
get_model_and_output_names(
eval_config: tfma.EvalConfig
) -> List[Tuple[Optional[str], Optional[str]]]
Returns a list of model_name-output_name tuples present in extracts.
get_predictions
get_predictions(
model_name: Optional[str] = None, output_name: Optional[str] = None
) -> Optional[types.TensorValueMaybeMultiLevelDict]
Returns tfma.PREDICTIONS_KEY extract.
get_transformed_features
get_transformed_features(
model_name: Optional[str] = None
) -> Optional[tfma.types.DictOfTensorValueMaybeDict
]
Returns tfma.TRANSFORMED_FEATURES_KEY extract.
items
items()
D.items() -> a set-like object providing a view on D's items
keys
keys()
D.keys() -> a set-like object providing a view on D's keys
pop
pop(
key, default=__marker
)
D.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found, d is returned if given, otherwise KeyError is raised.
popitem
popitem()
D.popitem() -> (k, v), remove and return some (key, value) pair as a 2-tuple; but raise KeyError if D is empty.
set_labels
set_labels(
labels: tfma.types.TensorValueMaybeMultiLevelDict
,
model_name: Optional[str] = None,
output_name: Optional[str] = None
) -> Optional[types.TensorValueMaybeMultiLevelDict]
Sets tfma.LABELS_KEY extract for a given model and output.
set_predictions
set_predictions(
predictions: tfma.types.TensorValueMaybeMultiLevelDict
,
model_name: Optional[str] = None,
output_name: Optional[str] = None
) -> Optional[types.TensorValueMaybeMultiLevelDict]
Sets tfma.PREDICTIONS_KEY extract for a given model and output.
setdefault
setdefault(
key, default=None
)
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D
update
update(
other, /, **kwds
)
D.update([E, ]**F) -> None. Update D from mapping/iterable E and F. If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v
values
values()
D.values() -> an object providing a view on D's values