View source on GitHub |
Init module for TensorFlow Model Analysis.
Modules
addons
module: Init module for TensorFlow Model Analysis addons.
constants
module: Constants used in TensorFlow Model Analysis.
contrib
module
evaluators
module: Init module for TensorFlow Model Analysis evaluators.
experimental
module
export
module: Library for exporting the EvalSavedModel.
exporter
module: Exporter
class represents different flavors of model export.
extractors
module: Init module for TensorFlow Model Analysis extractors.
metrics
module: Init module for TensorFlow Model Analysis metrics.
model_agnostic_eval
module: Init module for TensorFlow Model Analysis model_agnostic_eval.
post_export_metrics
module: Library containing helpers for adding post export metrics for evaluation.
sdk
module: SDK for TensorFlow Model Analysis.
types
module: Types.
utils
module: Init module for TensorFlow Model Analysis utils.
validators
module: Init module for TensorFlow Model Analysis validators.
version
module: Contains the version string for this release of TFMA.
view
module: Initializes TFMA's view rendering api.
writers
module: Init module for TensorFlow Model Analysis writers.
Classes
class AggregationOptions
: A ProtocolMessage
class AttributionsForSlice
: A ProtocolMessage
class BinarizationOptions
: A ProtocolMessage
class ConfidenceIntervalOptions
: A ProtocolMessage
class CrossSliceMetricThreshold
: A ProtocolMessage
class CrossSliceMetricThresholds
: A ProtocolMessage
class CrossSlicingSpec
: A ProtocolMessage
class EvalConfig
: A ProtocolMessage
class EvalResult
: The result of a single model analysis run.
class EvalSharedModel
: Shared model used during extraction and evaluation.
class ExampleWeightOptions
: A ProtocolMessage
class FeaturesPredictionsLabels
: FeaturesPredictionsLabels(input_ref, features, predictions, labels)
class GenericChangeThreshold
: A ProtocolMessage
class GenericValueThreshold
: A ProtocolMessage
class MaterializedColumn
: MaterializedColumn(name, value)
class MetricConfig
: A ProtocolMessage
class MetricThreshold
: A ProtocolMessage
class MetricsForSlice
: A ProtocolMessage
class MetricsSpec
: A ProtocolMessage
class ModelLoader
: Model loader is responsible for loading shared model types.
class ModelSpec
: A ProtocolMessage
class Options
: A ProtocolMessage
class PaddingOptions
: A ProtocolMessage
class PerSliceMetricThreshold
: A ProtocolMessage
class PerSliceMetricThresholds
: A ProtocolMessage
class PlotsForSlice
: A ProtocolMessage
class RaggedTensorValue
: RaggedTensorValue encapsulates a batch of ragged tensor values.
class RepeatedInt32Value
: A ProtocolMessage
class RepeatedStringValue
: A ProtocolMessage
class SlicingSpec
: A ProtocolMessage
class SparseTensorValue
: SparseTensorValue encapsulates a batch of sparse tensor values.
class ValidationResult
: A ProtocolMessage
class VarLenTensorValue
: VarLenTensorValue encapsulates a batch of varlen dense tensor values.
Functions
BatchedInputsToExtracts(...)
: Converts Arrow RecordBatch inputs to Extracts.
ExtractAndEvaluate(...)
: Performs Extractions and Evaluations in provided order.
ExtractEvaluateAndWriteResults(...)
: PTransform for performing extraction, evaluation, and writing results.
InputsToExtracts(...)
: Converts serialized inputs (e.g. examples) to Extracts if not already.
Validate(...)
: Performs validation of alternative evaluations.
WriteResults(...)
: Writes Evaluation or Validation results using given writers.
analyze_raw_data(...)
: Runs TensorFlow model analysis on a pandas.DataFrame.
default_eval_shared_model(...)
: Returns default EvalSharedModel.
default_evaluators(...)
: Returns the default evaluators for use in ExtractAndEvaluate.
default_extractors(...)
: Returns the default extractors for use in ExtractAndEvaluate.
default_writers(...)
: Returns the default writers for use in WriteResults.
is_batched_input(...)
: Returns true if batched input should be used.
is_legacy_estimator(...)
: Returns true if there is a legacy estimator.
load_attributions(...)
: Read and deserialize the AttributionsForSlice records.
load_eval_result(...)
: Loads EvalResult object for use with the visualization functions.
load_eval_results(...)
: Loads results for multiple models or multiple data sets.
load_metrics(...)
: Read and deserialize the MetricsForSlice records.
load_plots(...)
: Read and deserialize the PlotsForSlice records.
load_validation_result(...)
: Read and deserialize the ValidationResult.
make_eval_results(...)
: Run model analysis for a single model on multiple data sets.
multiple_data_analysis(...)
: Run model analysis for a single model on multiple data sets.
multiple_model_analysis(...)
: Run model analysis for multiple models on the same data set.
run_model_analysis(...)
: Runs TensorFlow model analysis.