View source on GitHub
  
 | 
Returns a bucketized column, with a bucket index assigned to each input.
tft.apply_buckets(
    x: common_types.ConsistentTensorType,
    bucket_boundaries: common_types.BucketBoundariesType,
    name: Optional[str] = None
) -> common_types.ConsistentTensorType
Each element e in x is mapped to a positive index i for which
bucket_boundaries[i-1] <= e < bucket_boundaries[i], if it exists.
If e < bucket_boundaries[0], then e is mapped to 0. If
e >= bucket_boundaries[-1], then e is mapped to len(bucket_boundaries).
NaNs are mapped to len(bucket_boundaries).
Example:
x = tf.constant([[4.0, float('nan'), 1.0], [float('-inf'), 7.5, 10.0]])bucket_boundaries = tf.constant([[2.0, 5.0, 10.0]])tft.apply_buckets(x, bucket_boundaries)<tf.Tensor: shape=(2, 3), dtype=int64, numpy=array([[1, 3, 0],[0, 2, 3]])>
Returns | |
|---|---|
A Tensor, SparseTensor, or RaggedTensor of the same shape as x, with
each element in the returned tensor representing the bucketized value.
Bucketized value is in the range [0, len(bucket_boundaries)].
 | 
    View source on GitHub