tft.experimental.annotate_sparse_output_shape
Stay organized with collections
Save and categorize content based on your preferences.
Annotates a sparse output to have a given dense_shape.
tft.experimental.annotate_sparse_output_shape(
tensor: tf.SparseTensor, shape: Union[Sequence[int], tf.Tensor]
)
Args |
tensor
|
An SparseTensor to be annotated.
|
shape
|
A dense_shape to annotate tensor with. Note that this shape does
not include batch_size.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-11-01 UTC.
[null,null,["Last updated 2024-11-01 UTC."],[],[],null,["# tft.experimental.annotate_sparse_output_shape\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/transform/blob/v1.16.0/tensorflow_transform/experimental/annotators.py#L90-L121) |\n\nAnnotates a sparse output to have a given dense_shape. \n\n tft.experimental.annotate_sparse_output_shape(\n tensor: tf.SparseTensor, shape: Union[Sequence[int], tf.Tensor]\n )\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------|--------------------------------------------------------------------------------------------|\n| `tensor` | An `SparseTensor` to be annotated. |\n| `shape` | A dense_shape to annotate `tensor` with. Note that this shape does not include batch_size. |\n\n\u003cbr /\u003e"]]