Find the token count of each document/row.
tft.word_count(
    tokens: Union[tf.SparseTensor, tf.RaggedTensor], name: Optional[str] = None
) -> tf.Tensor
tokens is either a RaggedTensor or SparseTensor, representing tokenized
strings. This function simply returns size of each row, so the dtype is not
constrained to string.
Example:
sparse = tf.SparseTensor(indices=[[0, 0], [0, 1], [2, 2]],
                         values=['a', 'b', 'c'], dense_shape=(4, 4))
tft.word_count(sparse)
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([2, 0, 1, 0])>
Args | 
tokens
 | 
either
(1) a SparseTensor, or
(2) a RaggedTensor with ragged rank of 1, non-ragged rank of 1
of dtype tf.string containing tokens to be counted
 | 
name
 | 
(Optional) A name for this operation.
 | 
Returns | 
A one-dimensional Tensor the token counts of each row.
 | 
Raises | 
ValueError
 | 
if tokens is neither sparse nor ragged
 |