tensorflow::
#include <training_ops.h>
Update '*var' by subtracting 'alpha' * 'delta' from it.
Summary
Args:
- scope: A Scope object
- var: Should be from a Variable().
- alpha: Scaling factor. Must be a scalar.
- delta: The change.
Optional attributes (see Attrs):
- use_locking: If True, the subtraction will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
Returns:
- Output: Same as "var".
| Constructors and Destructors | |
|---|---|
| ApplyGradientDescent(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input alpha, ::tensorflow::Input delta) | |
| ApplyGradientDescent(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input alpha, ::tensorflow::Input delta, const ApplyGradientDescent::Attrs & attrs) | 
| Public attributes | |
|---|---|
| operation | |
| out | |
| Public functions | |
|---|---|
| node() const  | ::tensorflow::Node * | 
| operator::tensorflow::Input() const  |  | 
| operator::tensorflow::Output() const  |  | 
| Public static functions | |
|---|---|
| UseLocking(bool x) | |
| Structs | |
|---|---|
| tensorflow:: | Optional attribute setters for ApplyGradientDescent. | 
Public attributes
operation
Operation operation
out
::tensorflow::Output out
Public functions
ApplyGradientDescent
ApplyGradientDescent( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input alpha, ::tensorflow::Input delta )
ApplyGradientDescent
ApplyGradientDescent( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input alpha, ::tensorflow::Input delta, const ApplyGradientDescent::Attrs & attrs )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Public static functions
UseLocking
Attrs UseLocking( bool x )