Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: FakeQuantWithMinMaxVars
#include <array_ops.h>
Mengkuantisasi palsu tensor 'input' bertipe float melalui skalar float global.
Ringkasan
Kuantisasi palsu tensor inputs
bertipe float melalui skalar float global min
dan max
ke tensor outputs
dengan bentuk yang sama dengan inputs
.
Atribut
-
[min; max]
tentukan rentang penjepitan untuk data inputs
. - nilai
inputs
dikuantisasi ke dalam rentang kuantisasi ( [0; 2^num_bits - 1]
ketika narrow_range
salah dan [1; 2^num_bits - 1]
jika benar) dan kemudian didekuantisasi dan dikeluarkan sebagai float di [min; max]
interval. -
num_bits
adalah bitwidth kuantisasi; antara 2 dan 16, inklusif.
Sebelum kuantisasi, nilai min
dan max
disesuaikan dengan logika berikut. Disarankan untuk memiliki min <= 0 <= max
. Jika 0
tidak berada dalam kisaran nilai, perilakunya mungkin tidak terduga:
- Jika
0 < min < max
: min_adj = 0
dan max_adj = max - min
. - Jika
min < max < 0
: min_adj = min - max
dan max_adj = 0
. - Jika
min <= 0 <= max
: scale = (max - min) / (2^num_bits - 1)
, min_adj = scale * round(min / scale)
dan max_adj = max + min_adj - min
.
Operasi ini memiliki gradien sehingga memungkinkan untuk melatih nilai min
dan max
.
Argumen:
Pengembalian:
Atribut publik
Fungsi publik
simpul
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Keluaran
operator::tensorflow::Output() const
Fungsi statis publik
Rentang Sempit
Attrs NarrowRange(
bool x
)
NomorBits
Attrs NumBits(
int64 x
)
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-27 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::FakeQuantWithMinMaxVars Class Reference\n\ntensorflow::ops::FakeQuantWithMinMaxVars\n========================================\n\n`#include \u003carray_ops.h\u003e`\n\nFake-quantize the 'inputs' tensor of type float via global float scalars.\n\nSummary\n-------\n\nFake-quantize the `inputs` tensor of type float via global float scalars `min` and `max` to `outputs` tensor of same shape as `inputs`.\n\nAttributes\n\n\n- `[min; max]` define the clamping range for the `inputs` data.\n- `inputs` values are quantized into the quantization range ( `[0; 2^num_bits - 1]` when `narrow_range` is false and `[1; 2^num_bits - 1]` when it is true) and then de-quantized and output as floats in `[min; max]` interval.\n- `num_bits` is the bitwidth of the quantization; between 2 and 16, inclusive.\n\n\u003cbr /\u003e\n\nBefore quantization, `min` and `max` values are adjusted with the following logic. It is suggested to have `min \u003c= 0 \u003c= max`. If `0` is not in the range of values, the behavior can be unexpected:\n\n\n- If `0 \u003c min \u003c max`: `min_adj = 0` and `max_adj = max - min`.\n- If `min \u003c max \u003c 0`: `min_adj = min - max` and `max_adj = 0`.\n- If `min \u003c= 0 \u003c= max`: `scale = (max - min) / (2^num_bits - 1)`, `min_adj = scale * round(min / scale)` and `max_adj = max + min_adj - min`.\n\n\u003cbr /\u003e\n\nThis operation has a gradient and thus allows for training `min` and `max` values.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The outputs tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [FakeQuantWithMinMaxVars](#classtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_1a00ee58aabd6226983d344471c6956521)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` inputs, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max)` ||\n| [FakeQuantWithMinMaxVars](#classtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_1a86e17a607800b4a82880a67535ed4395)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` inputs, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max, const `[FakeQuantWithMinMaxVars::Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/fake-quant-with-min-max-vars/attrs#structtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_1af7b295d43fd540e49c6a4e1621d8ed30) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [outputs](#classtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_1a9fc018d2523132a82d3e60c8e7dc465f) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_1a1d4aaa7a38907c46fc2ea3372028d94c)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_1a384ba596b1a4aebcb314a87e7411fd62)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_1ac698bada55ee29951a83182f80ee6395)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [NarrowRange](#classtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_1aee3dc1525e2c3837ac1b66757ec20823)`(bool x)` | [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/fake-quant-with-min-max-vars/attrs#structtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_1_1_attrs) |\n| [NumBits](#classtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_1a08eae0ee7977569586e1a3fadb261b95)`(int64 x)` | [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/fake-quant-with-min-max-vars/attrs#structtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_1_1_attrs) |\n\n| ### Structs ||\n|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::FakeQuantWithMinMaxVars::Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/fake-quant-with-min-max-vars/attrs) | Optional attribute setters for [FakeQuantWithMinMaxVars](/versions/r2.3/api_docs/cc/class/tensorflow/ops/fake-quant-with-min-max-vars#classtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### outputs\n\n```text\n::tensorflow::Output outputs\n``` \n\nPublic functions\n----------------\n\n### FakeQuantWithMinMaxVars\n\n```gdscript\n FakeQuantWithMinMaxVars(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input inputs,\n ::tensorflow::Input min,\n ::tensorflow::Input max\n)\n``` \n\n### FakeQuantWithMinMaxVars\n\n```gdscript\n FakeQuantWithMinMaxVars(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input inputs,\n ::tensorflow::Input min,\n ::tensorflow::Input max,\n const FakeQuantWithMinMaxVars::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### NarrowRange\n\n```text\nAttrs NarrowRange(\n bool x\n)\n``` \n\n### NumBits\n\n```text\nAttrs NumBits(\n int64 x\n)\n```"]]