Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
fluxo tensor:: ops:: Relu
#include <nn_ops.h>
Calcula linear retificado: max(features, 0)
.
Resumo
Veja: https://en.wikipedia.org/wiki/Rectifier_(neural_networks) Exemplo de uso: tf.nn.relu([-2., 0., -0., 3.]).numpy() array([ 0., 0., -0., 3.], dtype=float32)
Argumentos:
Retorna:
-
Output
: O tensor de ativações.
Atributos públicos
Funções públicas
nó
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operador::tensorflow::Saída
operator::tensorflow::Output() const
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2025-07-27 UTC.
[null,null,["Última atualização 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::Relu Class Reference\n\ntensorflow::ops::Relu\n=====================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes rectified linear: `max(features, 0)`.\n\nSummary\n-------\n\nSee: \u003chttps://en.wikipedia.org/wiki/Rectifier_(neural_networks)\u003e Example usage: tf.nn.relu(\\[-2., 0., -0., 3.\\]).numpy() array(\\[ 0., 0., -0., 3.\\], dtype=float32)\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The activations tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Relu](#classtensorflow_1_1ops_1_1_relu_1a7803b4543ea4326b15bc124318a0337d)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` features)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [activations](#classtensorflow_1_1ops_1_1_relu_1a8844d0073c49f446320702a327c3bc59) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_relu_1aa2b9226933d48b88974932125f5790c5) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_relu_1a4aa527ed3a2a511b20af65389a580d7f)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_relu_1adb54d55892d25f2861881dd18f013718)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_relu_1acdac2b75ed23e065a9ba239d8c70e090)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### activations\n\n```text\n::tensorflow::Output activations\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### Relu\n\n```gdscript\n Relu(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input features\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]