Aprenda o que há de mais recente em aprendizado de máquina, IA generativa e muito mais no WiML Symposium 2023
Registre-se
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
tensorflow:: ops:: SparseSoftmaxCrossEntropyWithLogits
#include <nn_ops.h>
Calcula o custo de entropia cruzada softmax e gradientes para retropropagação.
Resumo
Ao contrário de SoftmaxCrossEntropyWithLogits
, esta operação não aceita uma matriz de probabilidades de rótulos, mas sim um único rótulo por linha de recursos. Este rótulo é considerado como tendo probabilidade 1,0 para a linha fornecida.
As entradas são os logits, não as probabilidades.
Argumentos:
- scope: um objeto Scope
- características: matriz batch_size x num_classes
- labels: vetor batch_size com valores em [0, num_classes). Este é o rótulo para a entrada de minilote fornecida.
Devoluções:
- Perda de
Output
: Por exemplo, perda (vetor batch_size). -
Output
backprop: gradientes retropropagados (matriz batch_size x num_classes).
Atributos públicos
Funções públicas
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2022-08-30 UTC.
[null,null,["Última atualização 2022-08-30 UTC."],[],[],null,["# tensorflow::ops::SparseSoftmaxCrossEntropyWithLogits Class Reference\n\ntensorflow::ops::SparseSoftmaxCrossEntropyWithLogits\n====================================================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes softmax cross entropy cost and gradients to backpropagate.\n\nSummary\n-------\n\nUnlike [SoftmaxCrossEntropyWithLogits](/versions/r2.3/api_docs/cc/class/tensorflow/ops/softmax-cross-entropy-with-logits#classtensorflow_1_1ops_1_1_softmax_cross_entropy_with_logits), this operation does not accept a matrix of label probabilities, but rather a single label per row of features. This label is considered to have probability 1.0 for the given row.\n\nInputs are the logits, not probabilities.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- features: batch_size x num_classes matrix\n- labels: batch_size vector with values in \\[0, num_classes). This is the label for the given minibatch entry.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) loss: Per example loss (batch_size vector).\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) backprop: backpropagated gradients (batch_size x num_classes matrix).\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseSoftmaxCrossEntropyWithLogits](#classtensorflow_1_1ops_1_1_sparse_softmax_cross_entropy_with_logits_1a965e868e103e3908d2bfb1dcd368e90d)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` features, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` labels)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [backprop](#classtensorflow_1_1ops_1_1_sparse_softmax_cross_entropy_with_logits_1a9e77b4f5efe0d0762f8fc95a3f7cdbaa) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [loss](#classtensorflow_1_1ops_1_1_sparse_softmax_cross_entropy_with_logits_1aa3c9d1b704d919039c2cd2686fbea683) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_sparse_softmax_cross_entropy_with_logits_1ac581285ea4e5d57f85d8f317aed838fa) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\nPublic attributes\n-----------------\n\n### backprop\n\n```text\n::tensorflow::Output backprop\n``` \n\n### loss\n\n```text\n::tensorflow::Output loss\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### SparseSoftmaxCrossEntropyWithLogits\n\n```gdscript\n SparseSoftmaxCrossEntropyWithLogits(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input features,\n ::tensorflow::Input labels\n)\n```"]]