View source on GitHub |
Module level imports for tensorflow_transform.experimental.
Classes
class CacheablePTransformAnalyzer
: A PTransformAnalyzer which enables analyzer cache.
class PTransformAnalyzerCacheCoder
: A coder iterface for encoding and decoding cache items.
class SimpleJsonPTransformAnalyzerCacheCoder
: An accumulator cache coder that can handle lists.
Functions
annotate_sparse_output_shape(...)
: Annotates a sparse output to have a given dense_shape.
annotate_true_sparse_output(...)
: Annotates a sparse output to be truely sparse and not varlen.
approximate_vocabulary(...)
: Computes the unique values of a Tensor
over the whole dataset.
compute_and_apply_approximate_vocabulary(...)
: Generates an approximate vocabulary for x
and maps it to an integer.
document_frequency(...)
: Maps the terms in x to their document frequency in the same order.
get_vocabulary_size_by_name(...)
: Gets the size of a vocabulary created using tft.vocabulary
.
idf(...)
: Maps the terms in x to their inverse document frequency in the same order.
ptransform_analyzer(...)
: Applies a user-provided PTransform over the whole dataset.