Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::ops::Bincount
#include <math_ops.h>
Counts the number of occurrences of each value in an integer array.
Summary
Outputs a vector with length size
and the same dtype as weights
. If weights
are empty, then index i
stores the number of times the value i
is counted in arr
. If weights
are non-empty, then index i
stores the sum of the value in weights
at each index where the corresponding value in arr
is i
.
Values in arr
outside of the range [0, size) are ignored.
Arguments:
- scope: A Scope object
- arr: int32
Tensor
.
- size: non-negative int32 scalar
Tensor
.
- weights: is an int32, int64, float32, or float64
Tensor
with the same shape as arr
, or a length-0 Tensor
, in which case it acts as all weights equal to 1.
Returns:
Output
: 1D Tensor
with length equal to size
. The counts or summed weights for each value in the range [0, size).
Public attributes
Public functions
node
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-04-20 UTC.
[null,null,["Last updated 2020-04-20 UTC."],[],[],null,["# tensorflow::ops::Bincount Class Reference\n\ntensorflow::ops::Bincount\n=========================\n\n`#include \u003cmath_ops.h\u003e`\n\nCounts the number of occurrences of each value in an integer array.\n\nSummary\n-------\n\nOutputs a vector with length `size` and the same dtype as `weights`. If `weights` are empty, then index `i` stores the number of times the value `i` is counted in `arr`. If `weights` are non-empty, then index `i` stores the sum of the value in `weights` at each index where the corresponding value in `arr` is `i`.\n\nValues in `arr` outside of the range \\[0, size) are ignored.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- arr: int32 [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor).\n- size: non-negative int32 scalar [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor).\n- weights: is an int32, int64, float32, or float64 [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with the same shape as `arr`, or a length-0 [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor), in which case it acts as all weights equal to 1.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 1D [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with length equal to `size`. The counts or summed weights for each value in the range \\[0, size).\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Bincount](#classtensorflow_1_1ops_1_1_bincount_1aab467738732ef3a8009ad662ba4d3821)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` arr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` size, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` weights)` ||\n\n| ### Public attributes ||\n|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [bins](#classtensorflow_1_1ops_1_1_bincount_1ac125b9a1515efa737f727151bfeaaa73) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_bincount_1ab09a9d72c4506a6911bfbe00775dde37) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_bincount_1a4e41f60ef9fb7473b6aa1d8b939e11db)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_bincount_1a3ac1f5104aacae7c5ed57e9a2094a80a)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_bincount_1a05eb54bb4dcf8b07c04cd58c4232d229)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### bins\n\n```text\n::tensorflow::Output bins\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### Bincount\n\n```gdscript\n Bincount(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input arr,\n ::tensorflow::Input size,\n ::tensorflow::Input weights\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]