Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::ops::Cross
#include <math_ops.h>
Compute the pairwise cross product.
Summary
a
and b
must be the same shape; they can either be simple 3-element vectors, or any shape where the innermost dimension is 3. In the latter case, each pair of corresponding 3-element vectors is cross-multiplied independently.
Arguments:
- scope: A Scope object
- a: A tensor containing 3-element vectors.
- b: Another tensor, of same type and shape as
a
.
Returns:
Output
: Pairwise cross product of the vectors in a
and b
.
Public attributes
Public functions
node
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-04-20 UTC.
[null,null,["Last updated 2020-04-20 UTC."],[],[],null,["# tensorflow::ops::Cross Class Reference\n\ntensorflow::ops::Cross\n======================\n\n`#include \u003cmath_ops.h\u003e`\n\nCompute the pairwise cross product.\n\nSummary\n-------\n\n`a` and `b` must be the same shape; they can either be simple 3-element vectors, or any shape where the innermost dimension is 3. In the latter case, each pair of corresponding 3-element vectors is cross-multiplied independently.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- a: A tensor containing 3-element vectors.\n- b: Another tensor, of same type and shape as `a`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Pairwise cross product of the vectors in `a` and `b`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Cross](#classtensorflow_1_1ops_1_1_cross_1a2d0d3e2d7c97664d9580df02605d9db9)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` a, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` b)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_cross_1a00b77699cc5ca96059de9e00ba6bad3d) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [product](#classtensorflow_1_1ops_1_1_cross_1af8a37ae245753365a272a83d54cb471f) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_cross_1ac31667b61bd41cbe5ecb0c20852475d9)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_cross_1abafd2b168be8b2ceb0944b95755281eb)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_cross_1a2303acdef93919770fab13f504054c34)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### product\n\n```text\n::tensorflow::Output product\n``` \n\nPublic functions\n----------------\n\n### Cross\n\n```gdscript\n Cross(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input a,\n ::tensorflow::Input b\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]