Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::ops::DeserializeManySparse
#include <sparse_ops.h>
Deserialize and concatenate SparseTensors
from a serialized minibatch.
Summary
The input serialized_sparse
must be a string matrix of shape [N x 3]
where N
is the minibatch size and the rows correspond to packed outputs of SerializeSparse
. The ranks of the original SparseTensor
objects must all match. When the final SparseTensor
is created, it has rank one higher than the ranks of the incoming SparseTensor
objects (they have been concatenated along a new row dimension).
The output SparseTensor
object's shape values for all dimensions but the first are the max across the input SparseTensor
objects' shape values for the corresponding dimensions. Its first shape value is N
, the minibatch size.
The input SparseTensor
objects' indices are assumed ordered in standard lexicographic order. If this is not the case, after this step run SparseReorder
to restore index ordering.
For example, if the serialized input is a [2 x 3]
matrix representing two original SparseTensor
objects:
index = [ 0]
[10]
[20]
values = [1, 2, 3]
shape = [50]
and
index = [ 2]
[10]
values = [4, 5]
shape = [30]
then the final deserialized SparseTensor
will be:
index = [0 0]
[0 10]
[0 20]
[1 2]
[1 10]
values = [1, 2, 3, 4, 5]
shape = [2 50]
Arguments:
- scope: A Scope object
- serialized_sparse: 2-D, The
N
serialized SparseTensor
objects. Must have 3 columns.
- dtype: The
dtype
of the serialized SparseTensor
objects.
Returns:
Public attributes
Public functions
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-04-20 UTC.
[null,null,["Last updated 2020-04-20 UTC."],[],[],null,["# tensorflow::ops::DeserializeManySparse Class Reference\n\ntensorflow::ops::DeserializeManySparse\n======================================\n\n`#include \u003csparse_ops.h\u003e`\n\nDeserialize and concatenate `SparseTensors` from a serialized minibatch.\n\nSummary\n-------\n\nThe input `serialized_sparse` must be a string matrix of shape `[N x 3]` where `N` is the minibatch size and the rows correspond to packed outputs of [SerializeSparse](/versions/r1.15/api_docs/cc/class/tensorflow/ops/serialize-sparse#classtensorflow_1_1ops_1_1_serialize_sparse). The ranks of the original `SparseTensor` objects must all match. When the final `SparseTensor` is created, it has rank one higher than the ranks of the incoming `SparseTensor` objects (they have been concatenated along a new row dimension).\n\nThe output `SparseTensor` object's shape values for all dimensions but the first are the max across the input `SparseTensor` objects' shape values for the corresponding dimensions. Its first shape value is `N`, the minibatch size.\n\nThe input `SparseTensor` objects' indices are assumed ordered in standard lexicographic order. If this is not the case, after this step run [SparseReorder](/versions/r1.15/api_docs/cc/class/tensorflow/ops/sparse-reorder#classtensorflow_1_1ops_1_1_sparse_reorder) to restore index ordering.\n\nFor example, if the serialized input is a `[2 x 3]` matrix representing two original `SparseTensor` objects: \n\n```text\nindex = [ 0]\n [10]\n [20]\nvalues = [1, 2, 3]\nshape = [50]\n```\n\n\u003cbr /\u003e\n\nand \n\n```text\nindex = [ 2]\n [10]\nvalues = [4, 5]\nshape = [30]\n```\n\n\u003cbr /\u003e\n\nthen the final deserialized `SparseTensor` will be: \n\n```text\nindex = [0 0]\n [0 10]\n [0 20]\n [1 2]\n [1 10]\nvalues = [1, 2, 3, 4, 5]\nshape = [2 50]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- serialized_sparse: 2-D, The `N` serialized `SparseTensor` objects. Must have 3 columns.\n- dtype: The `dtype` of the serialized `SparseTensor` objects.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) sparse_indices\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) sparse_values\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) sparse_shape\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [DeserializeManySparse](#classtensorflow_1_1ops_1_1_deserialize_many_sparse_1ab7cf9797d35b97c6d82e4000573b7839)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` serialized_sparse, DataType dtype)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_deserialize_many_sparse_1ac7cd19536afb9e162240583e49e59e8d) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [sparse_indices](#classtensorflow_1_1ops_1_1_deserialize_many_sparse_1a047caae64f0cea6d6dc1659d15bfe4b9) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [sparse_shape](#classtensorflow_1_1ops_1_1_deserialize_many_sparse_1a248aaedf66a2ba1733b1f2e541c4d3e2) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [sparse_values](#classtensorflow_1_1ops_1_1_deserialize_many_sparse_1a1047d48275c3140bedd5e8737af534f2) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### sparse_indices\n\n```scdoc\n::tensorflow::Output sparse_indices\n``` \n\n### sparse_shape\n\n```scdoc\n::tensorflow::Output sparse_shape\n``` \n\n### sparse_values\n\n```scdoc\n::tensorflow::Output sparse_values\n``` \n\nPublic functions\n----------------\n\n### DeserializeManySparse\n\n```gdscript\n DeserializeManySparse(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input serialized_sparse,\n DataType dtype\n)\n```"]]