Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::ops::Dilation2D
#include <nn_ops.h>
Computes the grayscale dilation of 4-D input
and 3-D filter
tensors.
Summary
The input
tensor has shape [batch, in_height, in_width, depth]
and the filter
tensor has shape [filter_height, filter_width, depth]
, i.e., each input channel is processed independently of the others with its own structuring function. The output
tensor has shape [batch, out_height, out_width, depth]
. The spatial dimensions of the output tensor depend on the padding
algorithm. We currently only support the default "NHWC" data_format
.
In detail, the grayscale morphological 2-D dilation is the max-sum correlation (for consistency with conv2d
, we use unmirrored filters):
output[b, y, x, c] =
max_{dy, dx} input[b,
strides[1] * y + rates[1] * dy,
strides[2] * x + rates[2] * dx,
c] +
filter[dy, dx, c]
Max-pooling is a special case when the filter has size equal to the pooling kernel size and contains all zeros.
Note on duality: The dilation of input
by the filter
is equal to the negation of the erosion of -input
by the reflected filter
.
Arguments:
- scope: A Scope object
- input: 4-D with shape
[batch, in_height, in_width, depth]
.
- filter: 3-D with shape
[filter_height, filter_width, depth]
.
- strides: The stride of the sliding window for each dimension of the input tensor. Must be:
[1, stride_height, stride_width, 1]
.
- rates: The input stride for atrous morphological dilation. Must be:
[1, rate_height, rate_width, 1]
.
- padding: The type of padding algorithm to use.
Returns:
Output
: 4-D with shape [batch, out_height, out_width, depth]
.
Public attributes
Public functions
node
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-04-20 UTC.
[null,null,["Last updated 2020-04-20 UTC."],[],[],null,["# tensorflow::ops::Dilation2D Class Reference\n\ntensorflow::ops::Dilation2D\n===========================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes the grayscale dilation of 4-D `input` and 3-D `filter` tensors.\n\nSummary\n-------\n\nThe `input` tensor has shape `[batch, in_height, in_width, depth]` and the `filter` tensor has shape `[filter_height, filter_width, depth]`, i.e., each input channel is processed independently of the others with its own structuring function. The `output` tensor has shape `[batch, out_height, out_width, depth]`. The spatial dimensions of the output tensor depend on the `padding` algorithm. We currently only support the default \"NHWC\" `data_format`.\n\nIn detail, the grayscale morphological 2-D dilation is the max-sum correlation (for consistency with `conv2d`, we use unmirrored filters): \n\n```scdoc\noutput[b, y, x, c] =\n max_{dy, dx} input[b,\n strides[1] * y + rates[1] * dy,\n strides[2] * x + rates[2] * dx,\n c] +\n filter[dy, dx, c]\n```\n\n\u003cbr /\u003e\n\nMax-pooling is a special case when the filter has size equal to the pooling kernel size and contains all zeros.\n\nNote on duality: The dilation of `input` by the `filter` is equal to the negation of the erosion of `-input` by the reflected `filter`.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: 4-D with shape `[batch, in_height, in_width, depth]`.\n- filter: 3-D with shape `[filter_height, filter_width, depth]`.\n- strides: The stride of the sliding window for each dimension of the input tensor. Must be: `[1, stride_height, stride_width, 1]`.\n- rates: The input stride for atrous morphological dilation. Must be: `[1, rate_height, rate_width, 1]`.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 4-D with shape `[batch, out_height, out_width, depth]`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Dilation2D](#classtensorflow_1_1ops_1_1_dilation2_d_1aa7fba6ab148288fc230175c265483ff3)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, const gtl::ArraySlice\u003c int \u003e & strides, const gtl::ArraySlice\u003c int \u003e & rates, StringPiece padding)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_dilation2_d_1a50e0232a57e1ec03bc56803f2e2ae58e) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_dilation2_d_1ae68b7f48c9fc91ffdef4e18bd34625f0) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_dilation2_d_1a965eb807b87a9ac84ef8533e6da72768)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_dilation2_d_1ae1a45a55c3092ef319c027a697e3e667)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_dilation2_d_1a451d294669723935c6618946259273c3)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Dilation2D\n\n```gdscript\n Dilation2D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input filter,\n const gtl::ArraySlice\u003c int \u003e & strides,\n const gtl::ArraySlice\u003c int \u003e & rates,\n StringPiece padding\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]