コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
テンソルフロー::作戦::スパースクロス
#include <sparse_ops.h>
スパースおよびデンステンソルのリストからスパースクロスを生成します。
まとめ
この操作は 2 つのリスト (2D SparseTensor
の 1 つと 2D Tensor
の 1 つ) を受け取り、それぞれが 1 つの特徴列の特徴を表します。これらの特徴をバッチごとに交差させた 2D SparseTensor
を出力します。
たとえば、入力が次の場合、
inputs[0]: SparseTensor with shape = [2, 2]
[0, 0]: "a"
[1, 0]: "b"
[1, 1]: "c"
inputs[1]: SparseTensor with shape = [2, 1]
[0, 0]: "d"
[1, 0]: "e"
inputs[2]: Tensor [["f"], ["g"]]
出力は次のようになります
shape = [2, 2]
[0, 0]: "a_X_d_X_f"
[1, 0]: "b_X_e_X_g"
[1, 1]: "c_X_e_X_g"
hashed_output=true の場合、出力は次のようになります。
shape = [2, 2]
[0, 0]: FingerprintCat64(
Fingerprint64("f"), FingerprintCat64(
Fingerprint64("d"), Fingerprint64("a")))
[1, 0]: FingerprintCat64(
Fingerprint64("g"), FingerprintCat64(
Fingerprint64("e"), Fingerprint64("b")))
[1, 1]: FingerprintCat64(
Fingerprint64("g"), FingerprintCat64(
Fingerprint64("e"), Fingerprint64("c")))
引数:
- スコープ:スコープオブジェクト
- インデックス: 2-D。各入力
SparseTensor
のインデックス。 - 値: 1-D。各
SparseTensor
の値。 - 形状: 1-D。各
SparseTensor
の形状。 - 密な入力: 2 次元。密な
Tensor
で表される列。 - hashed_output: true の場合、文字列の代わりにクロスのハッシュを返します。これにより、文字列の操作を回避できるようになります。
- num_buckets: hashed_output が true の場合に使用されます。出力 = hashed_valuenum_buckets if num_buckets > 0 else hashed_value。
- hash_key: 指紋を結合するために
FingerprintCat64
関数によって使用される hash_key を指定します。
戻り値:
-
Output
output_indices: 2-D。連結されたSparseTensor
のインデックス。 -
Output
出力値: 1-D。連結またはハッシュされたSparseTensor
の空でない値。 -
Output
出力形状: 1-D。連結されたSparseTensor
の形状。
パブリック属性
公共機能
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-07-25 UTC。
[null,null,["最終更新日 2025-07-25 UTC。"],[],[],null,["# tensorflow::ops::SparseCross Class Reference\n\ntensorflow::ops::SparseCross\n============================\n\n`#include \u003csparse_ops.h\u003e`\n\nGenerates sparse cross from a list of sparse and dense tensors.\n\nSummary\n-------\n\nThe op takes two lists, one of 2D `SparseTensor` and one of 2D [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor), each representing features of one feature column. It outputs a 2D `SparseTensor` with the batchwise crosses of these features.\n\nFor example, if the inputs are \n\n```text\ninputs[0]: SparseTensor with shape = [2, 2]\n[0, 0]: \"a\"\n[1, 0]: \"b\"\n[1, 1]: \"c\"\n\ninputs[1]: SparseTensor with shape = [2, 1]\n[0, 0]: \"d\"\n[1, 0]: \"e\"\n\ninputs[2]: Tensor [[\"f\"], [\"g\"]]\n```\n\n\u003cbr /\u003e\n\nthen the output will be \n\n```scdoc\nshape = [2, 2]\n[0, 0]: \"a_X_d_X_f\"\n[1, 0]: \"b_X_e_X_g\"\n[1, 1]: \"c_X_e_X_g\"\n```\n\n\u003cbr /\u003e\n\nif hashed_output=true then the output will be \n\n```text\nshape = [2, 2]\n[0, 0]: FingerprintCat64(\n Fingerprint64(\"f\"), FingerprintCat64(\n Fingerprint64(\"d\"), Fingerprint64(\"a\")))\n[1, 0]: FingerprintCat64(\n Fingerprint64(\"g\"), FingerprintCat64(\n Fingerprint64(\"e\"), Fingerprint64(\"b\")))\n[1, 1]: FingerprintCat64(\n Fingerprint64(\"g\"), FingerprintCat64(\n Fingerprint64(\"e\"), Fingerprint64(\"c\")))\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- indices: 2-D. Indices of each input `SparseTensor`.\n- values: 1-D. values of each `SparseTensor`.\n- shapes: 1-D. Shapes of each `SparseTensor`.\n- dense_inputs: 2-D. Columns represented by dense [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor).\n- hashed_output: If true, returns the hash of the cross instead of the string. This will allow us avoiding string manipulations.\n- num_buckets: It is used if hashed_output is true. output = hashed_valuenum_buckets if num_buckets \\\u003e 0 else hashed_value.\n- hash_key: Specify the hash_key that will be used by the `FingerprintCat64` function to combine the crosses fingerprints.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_indices: 2-D. Indices of the concatenated `SparseTensor`.\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_values: 1-D. Non-empty values of the concatenated or hashed `SparseTensor`.\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_shape: 1-D. Shape of the concatenated `SparseTensor`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseCross](#classtensorflow_1_1ops_1_1_sparse_cross_1aed8888154d0f2d69bb849055ef8805ae)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::InputList](/versions/r1.15/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` indices, ::`[tensorflow::InputList](/versions/r1.15/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` values, ::`[tensorflow::InputList](/versions/r1.15/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` shapes, ::`[tensorflow::InputList](/versions/r1.15/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` dense_inputs, bool hashed_output, int64 num_buckets, int64 hash_key, DataType out_type, DataType internal_type)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_cross_1aa80e22c2b5a8b8c00fdfbed5f6da6e03) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output_indices](#classtensorflow_1_1ops_1_1_sparse_cross_1aff3e5729686b249a84f3047cd2c7b2fa) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [output_shape](#classtensorflow_1_1ops_1_1_sparse_cross_1a168d4af0a9f32f170b7fd033550d0d24) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [output_values](#classtensorflow_1_1ops_1_1_sparse_cross_1a811794f95c743d1e8f345356e773447a) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output_indices\n\n```scdoc\n::tensorflow::Output output_indices\n``` \n\n### output_shape\n\n```scdoc\n::tensorflow::Output output_shape\n``` \n\n### output_values\n\n```scdoc\n::tensorflow::Output output_values\n``` \n\nPublic functions\n----------------\n\n### SparseCross\n\n```gdscript\n SparseCross(\n const ::tensorflow::Scope & scope,\n ::tensorflow::InputList indices,\n ::tensorflow::InputList values,\n ::tensorflow::InputList shapes,\n ::tensorflow::InputList dense_inputs,\n bool hashed_output,\n int64 num_buckets,\n int64 hash_key,\n DataType out_type,\n DataType internal_type\n)\n```"]]