tensorflow:: ops:: SparseSoftmax
  #include <sparse_ops.h>
  Applies softmax to a batched N-D SparseTensor. 
Summary
The inputs represent an N-D SparseTensor with logical shape [..., B, C] (where N >= 2), and with indices sorted in the canonical lexicographic order.
This op is equivalent to applying the normal tf.nn.softmax() to each innermost logical submatrix with shape [B, C], but with the catch that the implicitly zero elements do not participate. Specifically, the algorithm is equivalent to the following:
(1) Applies tf.nn.softmax() to a densified view of each innermost submatrix with shape [B, C], along the size-C dimension; (2) Masks out the original implicitly-zero locations; (3) Renormalizes the remaining elements.
Hence, the SparseTensor result has exactly the same non-zero indices and shape.
Arguments:
- scope: A Scope object
 - sp_indices: 2-D. 
NNZ x Rmatrix with the indices of non-empty values in a SparseTensor, in canonical ordering. - sp_values: 1-D. 
NNZnon-empty values corresponding tosp_indices. - sp_shape: 1-D. Shape of the input SparseTensor.
 
Returns:
Output: 1-D. TheNNZvalues for the resultSparseTensor.
        Constructors and Destructors | 
    |
|---|---|
        SparseSoftmax(const ::tensorflow::Scope & scope, ::tensorflow::Input sp_indices, ::tensorflow::Input sp_values, ::tensorflow::Input sp_shape)
         | 
    
        Public attributes | 
    |
|---|---|
        operation
       | 
      |
        output
       | 
      |
        Public functions | 
    |
|---|---|
        node() const 
       | 
      
        ::tensorflow::Node *
         | 
    
        operator::tensorflow::Input() const 
       | 
      
        
         | 
    
        operator::tensorflow::Output() const 
       | 
      
        
         | 
    
Public attributes
operation
Operation operation
output
::tensorflow::Output output
Public functions
SparseSoftmax
SparseSoftmax( const ::tensorflow::Scope & scope, ::tensorflow::Input sp_indices, ::tensorflow::Input sp_values, ::tensorflow::Input sp_shape )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const