Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::ops::TensorArraySplit
#include <data_flow_ops.h>
Split the data from the input value into TensorArray elements.
Summary
Assuming that lengths
takes on values
(n0, n1, ..., n(T-1))
and that `value` has shape
(n0 + n1 + ... + n(T-1) x d0 x d1 x ...)```,
this splits values into a TensorArray with T tensors.
TensorArray index t will be the subtensor of values with starting position
```(n0 + n1 + ... + n(t-1), 0, 0, ...)
and having size
nt x d0 x d1 x ...```
Arguments:
- scope: A Scope object
- handle: The handle to a TensorArray.
- value: The concatenated tensor to write to the TensorArray.
- lengths: The vector of lengths, how to split the rows of value into the TensorArray.
- flow_in: A float scalar that enforces proper chaining of operations.
Returns:
Output
: A float scalar that enforces proper chaining of operations.
Public attributes
Public functions
node
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-04-20 UTC.
[null,null,["Last updated 2020-04-20 UTC."],[],[],null,["# tensorflow::ops::TensorArraySplit Class Reference\n\ntensorflow::ops::TensorArraySplit\n=================================\n\n`#include \u003cdata_flow_ops.h\u003e`\n\nSplit the data from the input value into [TensorArray](/versions/r1.15/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array) elements.\n\nSummary\n-------\n\nAssuming that `lengths` takes on values\n\n(n0, n1, ..., n(T-1)) \n\n``````mysql\n\n \n and that `value` has shape\n \n \n`````text\n(n0 + n1 + ... + n(T-1) x d0 x d1 x ...)```,\n this splits values into a /versions/r1.15/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array with T tensors.\n /versions/r1.15/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array index t will be the subtensor of values with starting position\n ```(n0 + n1 + ... + n(t-1), 0, 0, ...)\u003cbr /\u003e\n\n\n\n \n\n \n\n```\nand having size\n```\n\n \n\u003cbr /\u003e\n\n\n\n \n\u003cbr /\u003e\n\n\n\n\n````gdscript\nnt x d0 x d1 x ...```\n Arguments:\n \n- scope: A /versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope object\n\n \n- handle: The handle to a /versions/r1.15/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array.\n\n \n- value: The concatenated tensor to write to the /versions/r1.15/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array.\n\n \n- lengths: The vector of lengths, how to split the rows of value into the /versions/r1.15/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array.\n\n \n- flow_in: A float scalar that enforces proper chaining of operations.\n\n \n\n Returns:\n \n- /versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output: A float scalar that enforces proper chaining of operations. \n\n \n\n \n\n\n \n### Constructors and Destructors\n\n\n \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1ae33a80f5f64f1d0ce47cb9ba380ee6bb(const ::/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope & scope, ::/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input handle, ::/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input value, ::/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input lengths, ::/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input flow_in)\n \n\n \n\n\n \n\n\n \n### Public attributes\n\n\n \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1a6a6beee076f43e4045b8327c9a8f0be9\n \n\n \n\n ::/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output\n \n\n \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1a1cf9133d6b7032ba48abeff356547a58\n \n\n \n\n /versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation\n \n\n \n\n\n \n\n\n \n### Public functions\n\n\n \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1ad03cc93202545e0234d90faee0425ed9() const \n \n\n \n\n ::tensorflow::Node *\n \n\n \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1ac2029be4ba96df5da32f6bd0fc3fb8b1() const \n \n\n \n\n `\n` \n`\n` \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1ab90a5c257e9a8df6209a663ade45e3fc() const \n \n\n \n\n `\n` \n`\n` \n\n\n Public attributes\n \n \n### flow_out\n\n\n \n```\n::tensorflow::Output flow_out\n```\n\n \n\n \n \n \n### operation\n\n\n \n\n\n```text\nOperation operation\n```\n\n \n\n \n Public functions\n \n \n### TensorArraySplit\n\n\n \n\n\n```gdscript\n TensorArraySplit(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input handle,\n ::tensorflow::Input value,\n ::tensorflow::Input lengths,\n ::tensorflow::Input flow_in\n)\n```\n\n \n\n \n \n \n### node\n\n\n \n\n\n```gdscript\n::tensorflow::Node * node() const \n```\n\n \n\n \n \n \n### operator::tensorflow::Input\n\n\n \n\n\n```gdscript\n operator::tensorflow::Input() const \n```\n\n \n\n \n \n \n### operator::tensorflow::Output\n\n\n \n\n\n```gdscript\n operator::tensorflow::Output() const \n```\n\n \n\n \n\n \n\n \n````\n`````\n``````"]]