Help protect the Great Barrier Reef with TensorFlow on Kaggle

# tensorflow::ops::UnsortedSegmentMax

`#include <math_ops.h>`

Computes the maximum along segments of a tensor.

## Summary

Read the section on segmentation for an explanation of segments.

This operator is similar to the unsorted segment sum operator found (here). Instead of computing the sum over segments, it computes the maximum such that:

\(output_i = {j...} data[j...]\) where max is over tuples `j...` such that `segment_ids[j...] == i`.

If the maximum is empty for a given segment ID `i`, it outputs the smallest possible value for the specific numeric type, `output[i] = numeric_limits::lowest()`.

If the given segment ID `i` is negative, then the corresponding value is dropped, and will not be included in the result.

For example:

```c = tf.constant([[1,2,3,4], [5,6,7,8], [4,3,2,1]])
tf.unsorted_segment_max(c, tf.constant([0, 1, 0]), num_segments=2)
# ==> [[ 4,  3, 3, 4],
#       [5,  6, 7, 8]]
```

Arguments:

• scope: A Scope object
• segment_ids: A tensor whose shape is a prefix of `data.shape`.

Returns:

• `Output`: Has same shape as data, except for the first `segment_ids.rank` dimensions, which are replaced with a single dimension which has size `num_segments`.

### Constructors and Destructors

`UnsortedSegmentMax(const ::tensorflow::Scope & scope, ::tensorflow::Input data, ::tensorflow::Input segment_ids, ::tensorflow::Input num_segments)`

### Public attributes

`operation`
`Operation`
`output`
`::tensorflow::Output`

### Public functions

`node() const `
`::tensorflow::Node *`
`operator::tensorflow::Input() const `
``` ```
``` ```
`operator::tensorflow::Output() const `
``` ```
``` ```

## Public attributes

### operation

`Operation operation`

### output

`::tensorflow::Output output`

## Public functions

### UnsortedSegmentMax

``` UnsortedSegmentMax(
const ::tensorflow::Scope & scope,
::tensorflow::Input data,
::tensorflow::Input segment_ids,
::tensorflow::Input num_segments
)```

### node

`::tensorflow::Node * node() const `

### operator::tensorflow::Input

` operator::tensorflow::Input() const `

### operator::tensorflow::Output

` operator::tensorflow::Output() const `
[]
[]