fluxo tensor:: ops:: Filtro Conv2DBackprop

#include <nn_ops.h>

Calcula os gradientes de convolução em relação ao filtro.

Resumo

Argumentos:

  • escopo: um objeto Escopo
  • entrada: 4-D com forma [batch, in_height, in_width, in_channels] .
  • filter_sizes: Um vetor inteiro que representa a forma do tensor de filter , onde filter é um tensor 4-D [filter_height, filter_width, in_channels, out_channels] .
  • out_backprop: 4-D com forma [batch, out_height, out_width, out_channels] . Os gradientes representam a saída da convolução.
  • passos: O passo da janela deslizante para cada dimensão da entrada da convolução. Deve estar na mesma ordem que a dimensão especificada com formato.
  • preenchimento: O tipo de algoritmo de preenchimento a ser usado.

Atributos opcionais (veja Attrs ):

  • explicit_paddings: se padding for "EXPLICIT" , a lista de valores de preenchimento explícitos. Para a i-ésima dimensão, a quantidade de preenchimento inserida antes e depois da dimensão é explicit_paddings[2 * i] e explicit_paddings[2 * i + 1] , respectivamente. Se padding não for "EXPLICIT" , explicit_paddings deverá estar vazio.
  • data_format: Especifique o formato dos dados de entrada e saída. Com o formato padrão "NHWC", os dados são armazenados na ordem de: [lote, in_height, in_width, in_channels]. Alternativamente, o formato pode ser "NCHW", a ordem de armazenamento de dados de: [lote, in_channels, in_height, in_width].
  • dilatações: tensor 1-D de comprimento 4. O fator de dilatação para cada dimensão da input . Se definido como k > 1, haverá k-1 células ignoradas entre cada elemento de filtro nessa dimensão. A ordem das dimensões é determinada pelo valor de data_format , veja detalhes acima. As dilatações nas dimensões do lote e profundidade devem ser 1.

Retorna:

  • Output : 4-D com formato [filter_height, filter_width, in_channels, out_channels] . Gradiente em relação à entrada do filter da convolução.

Construtores e Destruidores

Conv2DBackpropFilter (const :: tensorflow::Scope & scope, :: tensorflow::Input input, :: tensorflow::Input filter_sizes, :: tensorflow::Input out_backprop, const gtl::ArraySlice< int > & strides, StringPiece padding)
Conv2DBackpropFilter (const :: tensorflow::Scope & scope, :: tensorflow::Input input, :: tensorflow::Input filter_sizes, :: tensorflow::Input out_backprop, const gtl::ArraySlice< int > & strides, StringPiece padding, const Conv2DBackpropFilter::Attrs & attrs)

Atributos públicos

operation
output

Funções públicas

node () const
::tensorflow::Node *
operator::tensorflow::Input () const
operator::tensorflow::Output () const

Funções estáticas públicas

DataFormat (StringPiece x)
Dilations (const gtl::ArraySlice< int > & x)
ExplicitPaddings (const gtl::ArraySlice< int > & x)
UseCudnnOnGpu (bool x)

Estruturas

tensorflow:: ops:: Conv2DBackpropFilter:: Attrs

Configuradores de atributos opcionais para Conv2DBackpropFilter .

Atributos públicos

operação

Operation operation

saída

::tensorflow::Output output

Funções públicas

Filtro Conv2DBackprop

 Conv2DBackpropFilter(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input input,
  ::tensorflow::Input filter_sizes,
  ::tensorflow::Input out_backprop,
  const gtl::ArraySlice< int > & strides,
  StringPiece padding
)

Filtro Conv2DBackprop

 Conv2DBackpropFilter(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input input,
  ::tensorflow::Input filter_sizes,
  ::tensorflow::Input out_backprop,
  const gtl::ArraySlice< int > & strides,
  StringPiece padding,
  const Conv2DBackpropFilter::Attrs & attrs
)

::tensorflow::Node * node() const 

operador::tensorflow::Input

 operator::tensorflow::Input() const 

operador::tensorflow::Saída

 operator::tensorflow::Output() const 

Funções estáticas públicas

Formato de dados

Attrs DataFormat(
  StringPiece x
)

Dilatações

Attrs Dilations(
  const gtl::ArraySlice< int > & x
)

ExplicitPaddings

Attrs ExplicitPaddings(
  const gtl::ArraySlice< int > & x
)

UseCudnnOnGpu

Attrs UseCudnnOnGpu(
  bool x
)