tensorflow:: אופס:: DeserializeSparse
#include <sparse_ops.h>
דה-סריאליזציה של אובייקטים SparseTensor
.
תַקצִיר
הקלט serialized_sparse
חייב להיות בעל הצורה [?, ?, ..., ?, 3]
כאשר הממד האחרון מאחסן אובייקטים SparseTensor
מסודרים ושאר N הממדים (N >= 0) תואמים אצווה. הדרגות של אובייקטי SparseTensor
המקוריים חייבים להתאים כולם. כאשר ה- SparseTensor
הסופי נוצר, הדירוג שלו הוא הדירוג של אובייקטי SparseTensor
הנכנסים בתוספת N; הטנזורים הדלילים שורשרו לאורך ממדים חדשים, אחד לכל אצווה.
ערכי הצורה של אובייקט SparseTensor
הפלט עבור הממדים המקוריים הם המקסימום על פני ערכי הצורה של אובייקטי SparseTensor
הקלט עבור הממדים התואמים. המידות החדשות תואמות את גודל האצווה.
ההנחה היא שהמדדים של אובייקטי SparseTensor
הקלט מסודרים בסדר לקסיקוגרפי סטנדרטי. אם זה לא המקרה, לאחר שלב זה הפעל SparseReorder
כדי לשחזר את סדר האינדקס.
לדוגמה, אם הקלט בסידורי הוא מטריצה [2 x 3]
המייצגת שני אובייקטים מקוריים SparseTensor
:
index = [ 0]
[10]
[20]
values = [1, 2, 3]
shape = [50]
ו
index = [ 2]
[10]
values = [4, 5]
shape = [30]
אז ה- SparseTensor
המבוסס סופית יהיה:
index = [0 0]
[0 10]
[0 20]
[1 2]
[1 10]
values = [1, 2, 3, 4, 5]
shape = [2 50]
טיעונים:
- scope: אובייקט Scope
- serialized_sparse: אובייקטי
SparseTensor
המסודרים. הממד האחרון חייב לכלול 3 עמודות. - dtype: ה-
dtype
של אובייקטי SparseTensor
המסודרים.
החזרות:
תכונות ציבוריות
מִבצָע
Operation operation
מדדים_דלילים
::tensorflow::Output sparse_indices
צורה_דלילה
::tensorflow::Output sparse_shape
ערכים_דלילים
::tensorflow::Output sparse_values
תפקידים ציבוריים
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0. לפרטים, ניתן לעיין במדיניות האתר Google Developers. Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2025-07-27 (שעון UTC).
[null,null,["עדכון אחרון: 2025-07-27 (שעון UTC)."],[],[],null,["# tensorflow::ops::DeserializeSparse Class Reference\n\ntensorflow::ops::DeserializeSparse\n==================================\n\n`#include \u003csparse_ops.h\u003e`\n\nDeserialize `SparseTensor` objects.\n\nSummary\n-------\n\nThe input `serialized_sparse` must have the shape `[?, ?, ..., ?, 3]` where the last dimension stores serialized `SparseTensor` objects and the other N dimensions (N \\\u003e= 0) correspond to a batch. The ranks of the original `SparseTensor` objects must all match. When the final `SparseTensor` is created, its rank is the rank of the incoming `SparseTensor` objects plus N; the sparse tensors have been concatenated along new dimensions, one for each batch.\n\nThe output `SparseTensor` object's shape values for the original dimensions are the max across the input `SparseTensor` objects' shape values for the corresponding dimensions. The new dimensions match the size of the batch.\n\nThe input `SparseTensor` objects' indices are assumed ordered in standard lexicographic order. If this is not the case, after this step run [SparseReorder](/versions/r2.2/api_docs/cc/class/tensorflow/ops/sparse-reorder#classtensorflow_1_1ops_1_1_sparse_reorder) to restore index ordering.\n\nFor example, if the serialized input is a `[2 x 3]` matrix representing two original `SparseTensor` objects: \n\n```text\nindex = [ 0]\n [10]\n [20]\nvalues = [1, 2, 3]\nshape = [50]\n```\n\n\u003cbr /\u003e\n\nand \n\n```text\nindex = [ 2]\n [10]\nvalues = [4, 5]\nshape = [30]\n```\n\n\u003cbr /\u003e\n\nthen the final deserialized `SparseTensor` will be: \n\n```text\nindex = [0 0]\n [0 10]\n [0 20]\n [1 2]\n [1 10]\nvalues = [1, 2, 3, 4, 5]\nshape = [2 50]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- serialized_sparse: The serialized `SparseTensor` objects. The last dimension must have 3 columns.\n- dtype: The `dtype` of the serialized `SparseTensor` objects.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) sparse_indices\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) sparse_values\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) sparse_shape\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [DeserializeSparse](#classtensorflow_1_1ops_1_1_deserialize_sparse_1a023794d9b956960ff8d7189e5e3feec5)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` serialized_sparse, DataType dtype)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_deserialize_sparse_1abdd692db872e045ede9e84be66b35bc3) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [sparse_indices](#classtensorflow_1_1ops_1_1_deserialize_sparse_1acdaf19772a1be03384f76ac4e07f6aaf) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [sparse_shape](#classtensorflow_1_1ops_1_1_deserialize_sparse_1a86bbd4ffa415bb68db5fa2f1e76e7de5) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [sparse_values](#classtensorflow_1_1ops_1_1_deserialize_sparse_1a303201bfe16885e2cef2b115049d005e) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### sparse_indices\n\n```scdoc\n::tensorflow::Output sparse_indices\n``` \n\n### sparse_shape\n\n```scdoc\n::tensorflow::Output sparse_shape\n``` \n\n### sparse_values\n\n```scdoc\n::tensorflow::Output sparse_values\n``` \n\nPublic functions\n----------------\n\n### DeserializeSparse\n\n```gdscript\n DeserializeSparse(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input serialized_sparse,\n DataType dtype\n)\n```"]]