operator::tensorflow::Input() const
المشغل::tensorflow::الإخراج
operator::tensorflow::Output() const
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-27 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2025-07-27 (حسب التوقيت العالمي المتفَّق عليه)"],[],[],null,["# tensorflow::ops::MatrixSetDiag Class Reference\n\ntensorflow::ops::MatrixSetDiag\n==============================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns a batched matrix tensor with new batched diagonal values.\n\nSummary\n-------\n\nGiven `input` and `diagonal`, this operation returns a tensor with the same shape and values as `input`, except for the main diagonal of the innermost matrices. These will be overwritten by the values in `diagonal`.\n\nThe output is computed as follows:\n\nAssume `input` has `k+1` dimensions `[I, J, K, ..., M, N]` and `diagonal` has `k` dimensions `[I, J, K, ..., min(M, N)]`. Then the output is a tensor of rank `k+1` with dimensions `[I, J, K, ..., M, N]` where:\n\n\n- `output[i, j, k, ..., m, n] = diagonal[i, j, k, ..., n]` for `m == n`.\n- `output[i, j, k, ..., m, n] = input[i, j, k, ..., m, n]` for `m != n`.\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: Rank `k+1`, where `k \u003e= 1`.\n- diagonal: Rank `k`, where `k \u003e= 1`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Rank `k+1`, with `output.shape = input.shape`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [MatrixSetDiag](#classtensorflow_1_1ops_1_1_matrix_set_diag_1af9f6deaf5d71f88356239fd1fceb3bd5)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` diagonal)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_matrix_set_diag_1ac564fb65fed63cd95c5a876d8cfcb004) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_matrix_set_diag_1a58d08deb35db4f1602c1df59432ade6c) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_matrix_set_diag_1a20fc7ca0974220bfcd3a3aee08803d6c)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_matrix_set_diag_1af98eee12ae5e443a923b794be760afd7)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_matrix_set_diag_1adf4b733c12f7c7dc2387318fafff0413)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### MatrixSetDiag\n\n```gdscript\n MatrixSetDiag(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input diagonal\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]