operator::tensorflow::Input() const
אופרטור::tensorflow::פלט
operator::tensorflow::Output() const
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0. לפרטים, ניתן לעיין במדיניות האתר Google Developers. Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2025-07-27 (שעון UTC).
[null,null,["עדכון אחרון: 2025-07-27 (שעון UTC)."],[],[],null,["# tensorflow::ops::ParallelDynamicStitch Class Reference\n\ntensorflow::ops::ParallelDynamicStitch\n======================================\n\n`#include \u003cdata_flow_ops.h\u003e`\n\nInterleave the values from the `data` tensors into a single tensor.\n\nSummary\n-------\n\nBuilds a merged tensor such that\n\n\n```transact-sql\n merged[indices[m][i, ..., j], ...] = data[m][i, ..., j, ...]\n```\n\n\u003cbr /\u003e\n\nFor example, if each `indices[m]` is scalar or vector, we have\n\n\n```transact-sql\n # Scalar indices:\n merged[indices[m], ...] = data[m][...]\n```\n\n\u003cbr /\u003e\n\n\n```transact-sql\n # Vector indices:\n merged[indices[m][i], ...] = data[m][i, ...]\n```\n\n\u003cbr /\u003e\n\nEach `data[i].shape` must start with the corresponding `indices[i].shape`, and the rest of `data[i].shape` must be constant w.r.t. `i`. That is, we must have `data[i].shape = indices[i].shape + constant`. In terms of this `constant`, the output shape is \n\n```gdscript\nmerged.shape = [max(indices)] + constant\n```\n\n\u003cbr /\u003e\n\nValues may be merged in parallel, so if an index appears in both `indices[m][i]` and `indices[n][j]`, the result may be invalid. This differs from the normal [DynamicStitch](/versions/r2.2/api_docs/cc/class/tensorflow/ops/dynamic-stitch#classtensorflow_1_1ops_1_1_dynamic_stitch) operator that defines the behavior in that case.\n\nFor example:\n\n\n```text\n indices[0] = 6\n indices[1] = [4, 1]\n indices[2] = [[5, 2], [0, 3]]\n data[0] = [61, 62]\n data[1] = [[41, 42], [11, 12]]\n data[2] = [[[51, 52], [21, 22]], [[1, 2], [31, 32]]]\n merged = [[1, 2], [11, 12], [21, 22], [31, 32], [41, 42],\n [51, 52], [61, 62]]\n```\n\n\u003cbr /\u003e\n\nThis method can be used to merge partitions created by `dynamic_partition` as illustrated on the following example:\n\n\n```gdscript\n # Apply function (increments x_i) on elements for which a certain condition\n # apply (x_i != -1 in this example).\n x=tf.constant([0.1, -1., 5.2, 4.3, -1., 7.4])\n condition_mask=tf.not_equal(x,tf.constant(-1.))\n partitioned_data = tf.dynamic_partition(\n x, tf.cast(condition_mask, tf.int32) , 2)\n partitioned_data[1] = partitioned_data[1] + 1.0\n condition_indices = tf.dynamic_partition(\n tf.range(tf.shape(x)[0]), tf.cast(condition_mask, tf.int32) , 2)\n x = tf.dynamic_stitch(condition_indices, partitioned_data)\n # Here x=[1.1, -1., 6.2, 5.3, -1, 8.4], the -1. values remain\n # unchanged.\n```\n\n\u003cbr /\u003e\n\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The merged tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ParallelDynamicStitch](#classtensorflow_1_1ops_1_1_parallel_dynamic_stitch_1a6d5464f1c148b04bc28b9bff03f884d3)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::InputList](/versions/r2.2/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` indices, ::`[tensorflow::InputList](/versions/r2.2/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` data)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [merged](#classtensorflow_1_1ops_1_1_parallel_dynamic_stitch_1acf4ad6fe444ed11732637ae9f1951f16) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_parallel_dynamic_stitch_1a339e540a99d7624dfdc0236dcaaa7fd0) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_parallel_dynamic_stitch_1af337a4bfc6cb29dc5bf35e4158622436)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_parallel_dynamic_stitch_1aa13a376d3e19711dd994e37a3c97cbc8)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_parallel_dynamic_stitch_1aa279ea721b609a0870436bf241c90c9f)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### merged\n\n```text\n::tensorflow::Output merged\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### ParallelDynamicStitch\n\n```gdscript\n ParallelDynamicStitch(\n const ::tensorflow::Scope & scope,\n ::tensorflow::InputList indices,\n ::tensorflow::InputList data\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]