컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
텐서플로우:: 작전:: 소프트맥스
#include <nn_ops.h>
소프트맥스 활성화를 계산합니다.
요약
각 배치 i
와 클래스 j
에 대해 우리는
$$softmax[i, j] = exp(logits[i, j]) / sum_j(exp(logits[i, j]))$$
인수:
- 범위: 범위 개체
- 로지트:
[batch_size, num_classes]
모양의 2차원.
보고:
공개 속성
공공 기능
마디
::tensorflow::Node * node() const
operator::tensorflow::Input() const
연산자::텐서플로우::출력
operator::tensorflow::Output() const
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-27(UTC)
[null,null,["최종 업데이트: 2025-07-27(UTC)"],[],[],null,["# tensorflow::ops::Softmax Class Reference\n\ntensorflow::ops::Softmax\n========================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes softmax activations.\n\nSummary\n-------\n\nFor each batch `i` and class `j` we have \n\n```maxima\n $$softmax[i, j] = exp(logits[i, j]) / sum_j(exp(logits[i, j]))$$ \n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- logits: 2-D with shape `[batch_size, num_classes]`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Same shape as `logits`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Softmax](#classtensorflow_1_1ops_1_1_softmax_1a565ed3a9b8adbafdb0a1b2061ce9cb08)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` logits)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_softmax_1ae62568a4488f40832dac845de04cff94) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [softmax](#classtensorflow_1_1ops_1_1_softmax_1af8238048a2a280f84eee57c9c1919084) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_softmax_1afda37c06f46dc3432931b9d9d88c5d2f)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_softmax_1aa54bc0dd86d6e5de7ad24726ce6dd814)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_softmax_1ae17f3a9a7db00b3a8a148668fe8b45d8)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### softmax\n\n```text\n::tensorflow::Output softmax\n``` \n\nPublic functions\n----------------\n\n### Softmax\n\n```gdscript\n Softmax(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input logits\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]