Aprenda o que há de mais recente em aprendizado de máquina, IA generativa e muito mais no WiML Symposium 2023
Registre-se
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
tensorflow :: ops :: SquaredDifference
#include <math_ops.h>
Retorna (x - y) (x - y) elemento a elemento.
Resumo
NOTA : SquaredDifference
suporta transmissão. Mais sobre transmissão aqui
Argumentos:
Retorna:
Atributos públicos
Funções públicas
nó
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operador :: tensorflow :: Saída
operator::tensorflow::Output() const
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2020-04-20 UTC.
[null,null,["Última atualização 2020-04-20 UTC."],[],[],null,["# tensorflow::ops::SquaredDifference Class Reference\n\ntensorflow::ops::SquaredDifference\n==================================\n\n`#include \u003cmath_ops.h\u003e`\n\nReturns (x - y)(x - y) element-wise.\n\nSummary\n-------\n\n*NOTE* : [SquaredDifference](/versions/r2.2/api_docs/cc/class/tensorflow/ops/squared-difference#classtensorflow_1_1ops_1_1_squared_difference) supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The z tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SquaredDifference](#classtensorflow_1_1ops_1_1_squared_difference_1ad9d8ca7f0e712b91798188614089ba5d)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` x, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` y)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_squared_difference_1af4c11704d597547182b14602f27baadd) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [z](#classtensorflow_1_1ops_1_1_squared_difference_1a2aa31c19124f8b5cdaa03fccaecea978) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_squared_difference_1afea483b6c4697286b5c9f06f3526a57c)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_squared_difference_1afcf4fc760c4829e3f419ca0d4da75c65)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_squared_difference_1a27a54d1e2e6c6bf753bb145ef2d6d65e)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### z\n\n```text\n::tensorflow::Output z\n``` \n\nPublic functions\n----------------\n\n### SquaredDifference\n\n```gdscript\n SquaredDifference(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input x,\n ::tensorflow::Input y\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]