קל לארגן דפים בעזרת אוספים
אפשר לשמור ולסווג תוכן על סמך ההעדפות שלך.
tensorflow:: אופס:: QuantizeAndDequantizeV2:: Attrs
#include <array_ops.h>
קובעי תכונות אופציונליים עבור QuantizeAndDequantizeV2 .
תַקצִיר
תפקידים ציבוריים |
---|
Axis (int64 x) | אם צוין, ציר זה מטופל כאל ערוץ או ציר פרוסה, וטווח קוונטיזציה נפרד משמש עבור כל ערוץ או פרוסה לאורך ציר זה. |
NarrowRange (bool x) | אם נכון, אז הערך המוחלט של ערך המינימום המדוייק זהה לערך המקסימלי המכומתי, במקום 1 גדול יותר. |
NumBits (int64 x) | רוחב הסיביות של הקוונטיזציה. |
RangeGiven (bool x) | האם הטווח נתון או צריך להיקבע מטנזור input . |
RoundMode (StringPiece x) | התכונה 'round_mode' שולטת באיזה אלגוריתם שובר שוויון עיגול נעשה שימוש בעת עיגול ערכי ציפה למקבילותיהם הכומתיים. |
SignedInput (bool x) | האם הכימות חתום או לא חתום. |
תכונות ציבוריות
צִיר_
int64 tensorflow::ops::QuantizeAndDequantizeV2::Attrs::axis_ = -1
טווח_צר
bool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::narrow_range_ = false
מספר_סיביות_
int64 tensorflow::ops::QuantizeAndDequantizeV2::Attrs::num_bits_ = 8
טווח_נתון_
bool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::range_given_ = false
round_mode_
StringPiece tensorflow::ops::QuantizeAndDequantizeV2::Attrs::round_mode_ = "HALF_TO_EVEN"
bool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::signed_input_ = true
תפקידים ציבוריים
צִיר
TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::Axis(
int64 x
)
אם צוין, ציר זה מטופל כאל ערוץ או ציר פרוסה, וטווח קוונטיזציה נפרד משמש עבור כל ערוץ או פרוסה לאורך ציר זה.
ברירת המחדל היא -1
טווח צר
TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::NarrowRange(
bool x
)
אם נכון, אז הערך המוחלט של ערך המינימום המדוייק זהה לערך המקסימלי המכומתי, במקום 1 גדול יותר.
כלומר עבור קוונטיזציה של 8 סיביות, הערך המינימלי הוא -127 במקום -128.
ברירת המחדל ל-false
NumBits
TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::NumBits(
int64 x
)
רוחב הסיביות של הקוונטיזציה.
ברירת המחדל היא 8
RangeGiven
TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::RangeGiven(
bool x
)
האם הטווח נתון או צריך להיקבע מטנזור input
.
ברירת המחדל ל-false
RoundMode
TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::RoundMode(
StringPiece x
)
התכונה 'round_mode' שולטת באיזה אלגוריתם שובר שוויון עיגול נעשה שימוש בעת עיגול ערכי ציפה למקבילותיהם הכומתיים.
מצבי העיגול הבאים נתמכים כעת:
- HALF_TO_EVEN: זהו ברירת המחדל של round_mode.
- HALF_UP: סיבוב לכיוון חיובי. במצב זה 7.5 סיבובים עד 8 ו-7.5 סיבובים עד -7.
ברירת המחדל היא "HALF_TO_EVEN"
TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::SignedInput(
bool x
)
האם הכימות חתום או לא חתום.
(למעשה פרמטר זה היה צריך להיקרא signed_output
)
ברירת המחדל לאמת
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0. לפרטים, ניתן לעיין במדיניות האתר Google Developers. Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2025-07-26 (שעון UTC).
[null,null,["עדכון אחרון: 2025-07-26 (שעון UTC)."],[],[],null,["# tensorflow::ops::QuantizeAndDequantizeV2::Attrs Struct Reference\n\ntensorflow::ops::QuantizeAndDequantizeV2::Attrs\n===============================================\n\n`#include \u003carray_ops.h\u003e`\n\nOptional attribute setters for [QuantizeAndDequantizeV2](/versions/r2.2/api_docs/cc/class/tensorflow/ops/quantize-and-dequantize-v2#classtensorflow_1_1ops_1_1_quantize_and_dequantize_v2).\n\nSummary\n-------\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------------------------------------------|---------------|\n| [axis_](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a315bdca31eedd36ca93926e243fa1936)` = -1` | `int64` |\n| [narrow_range_](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1adf347e0c1f8214c14d7694ae285cc9d0)` = false` | `bool` |\n| [num_bits_](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a11159f89f2414130b6a3ad313b27716c)` = 8` | `int64` |\n| [range_given_](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a865cf4c82b9089b872eb9b918531f2db)` = false` | `bool` |\n| [round_mode_](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a6dfc7a75f4a69171c6497bb1edfa0d05)` = \"HALF_TO_EVEN\"` | `StringPiece` |\n| [signed_input_](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a790cd895eec69aba604ac8e9cb7f8a9f)` = true` | `bool` |\n\n| ### Public functions ||\n|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [Axis](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a763f00e13bdab9fb43c917bbc70cf634)`(int64 x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/quantize-and-dequantize-v2/attrs#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs) If specified, this axis is treated as a channel or slice axis, and a separate quantization range is used for each channel or slice along this axis. |\n| [NarrowRange](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1afaceca0792d45c8137aeb043c8cfda94)`(bool x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/quantize-and-dequantize-v2/attrs#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs) If True, then the absolute value of the quantized minimum value is the same as the quantized maximum value, instead of 1 greater. |\n| [NumBits](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a76057cdbc84759b92af376d7af6e5542)`(int64 x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/quantize-and-dequantize-v2/attrs#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs) The bitwidth of the quantization. |\n| [RangeGiven](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a6fa06a82baf6f5d343626b0ff362f28b)`(bool x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/quantize-and-dequantize-v2/attrs#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs) Whether the range is given or should be determined from the `input` tensor. |\n| [RoundMode](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1abbc6241855f1eb74e6c30f9bb38a9bea)`(StringPiece x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/quantize-and-dequantize-v2/attrs#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs) The 'round_mode' attribute controls which rounding tie-breaking algorithm is used when rounding float values to their quantized equivalents. |\n| [SignedInput](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1acc49af3428f348e5f27485c3d72e5598)`(bool x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/quantize-and-dequantize-v2/attrs#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs) Whether the quantization is signed or unsigned. |\n\nPublic attributes\n-----------------\n\n### axis_\n\n```scdoc\nint64 tensorflow::ops::QuantizeAndDequantizeV2::Attrs::axis_ = -1\n``` \n\n### narrow_range_\n\n```scdoc\nbool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::narrow_range_ = false\n``` \n\n### num_bits_\n\n```scdoc\nint64 tensorflow::ops::QuantizeAndDequantizeV2::Attrs::num_bits_ = 8\n``` \n\n### range_given_\n\n```scdoc\nbool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::range_given_ = false\n``` \n\n### round_mode_\n\n```scdoc\nStringPiece tensorflow::ops::QuantizeAndDequantizeV2::Attrs::round_mode_ = \"HALF_TO_EVEN\"\n``` \n\n### signed_input_\n\n```scdoc\nbool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::signed_input_ = true\n``` \n\nPublic functions\n----------------\n\n### Axis\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::Axis(\n int64 x\n)\n``` \nIf specified, this axis is treated as a channel or slice axis, and a separate quantization range is used for each channel or slice along this axis.\n\nDefaults to -1 \n\n### NarrowRange\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::NarrowRange(\n bool x\n)\n``` \nIf True, then the absolute value of the quantized minimum value is the same as the quantized maximum value, instead of 1 greater.\n\ni.e. for 8 bit quantization, the minimum value is -127 instead of -128.\n\nDefaults to false \n\n### NumBits\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::NumBits(\n int64 x\n)\n``` \nThe bitwidth of the quantization.\n\nDefaults to 8 \n\n### RangeGiven\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::RangeGiven(\n bool x\n)\n``` \nWhether the range is given or should be determined from the `input` tensor.\n\nDefaults to false \n\n### RoundMode\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::RoundMode(\n StringPiece x\n)\n``` \nThe 'round_mode' attribute controls which rounding tie-breaking algorithm is used when rounding float values to their quantized equivalents.\n\nThe following rounding modes are currently supported:\n\n\n- HALF_TO_EVEN: this is the default round_mode.\n- HALF_UP: round towards positive. In this mode 7.5 rounds up to 8 and -7.5 rounds up to -7.\n\n\u003cbr /\u003e\n\nDefaults to \"HALF_TO_EVEN\" \n\n### SignedInput\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::SignedInput(\n bool x\n)\n``` \nWhether the quantization is signed or unsigned.\n\n(actually this parameter should have been called **`signed_output`**)\n\nDefaults to true"]]