컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
텐서플로우:: 작전:: QuantizedBatchNormWithGlobalNormalization
#include <nn_ops.h>
양자화된 배치 정규화.
요약
이 작업은 더 이상 사용되지 않으며 향후 제거될 예정입니다. tf.nn.batch_normalization
선호하세요.
인수:
- 범위: 범위 개체
- t: 4D 입력 텐서 .
- t_min: 가장 낮은 양자화된 입력으로 표시되는 값입니다.
- t_max: 가장 높은 양자화된 입력으로 표시되는 값입니다.
- m: t의 마지막 차원과 일치하는 크기를 갖는 1D 평균 Tensor 입니다. 이는 tf.nn.moments의 첫 번째 출력 또는 저장된 이동 평균입니다.
- m_min: 가장 낮은 양자화 평균으로 표시되는 값입니다.
- m_max: 가장 높은 양자화된 평균으로 표현되는 값.
- v: t의 마지막 차원과 일치하는 크기를 갖는 1D 분산 텐서 . 이는 tf.nn.moments의 두 번째 출력 또는 저장된 이동 평균입니다.
- v_min: 가장 낮은 양자화 분산으로 표현되는 값.
- v_max: 가장 높은 양자화 분산으로 표현되는 값.
- beta: t의 마지막 차원과 일치하는 크기를 갖는 1D 베타 텐서 . 정규화된 텐서에 추가할 오프셋입니다.
- beta_min: 가장 낮은 양자화 오프셋으로 표시되는 값입니다.
- beta_max: 가장 높은 양자화 오프셋으로 표시되는 값입니다.
- gamma: t의 마지막 차원과 일치하는 크기를 갖는 1D 감마 텐서 . "scale_after_normalization"이 true이면 이 텐서는 정규화된 텐서와 곱해집니다.
- gamma_min: 가장 낮은 양자화된 감마로 표시되는 값입니다.
- gamma_max: 가장 높은 양자화된 감마로 표현되는 값.
- variance_epsilon: 0으로 나누는 것을 방지하기 위한 작은 부동 소수점 숫자입니다.
- scale_after_normalization: 결과 텐서에 감마를 곱해야 하는지 여부를 나타내는 부울입니다.
보고:
생성자와 소멸자 |
---|
QuantizedBatchNormWithGlobalNormalization (const :: tensorflow::Scope & scope, :: tensorflow::Input t, :: tensorflow::Input t_min, :: tensorflow::Input t_max, :: tensorflow::Input m, :: tensorflow::Input m_min, :: tensorflow::Input m_max, :: tensorflow::Input v, :: tensorflow::Input v_min, :: tensorflow::Input v_max, :: tensorflow::Input beta, :: tensorflow::Input beta_min, :: tensorflow::Input beta_max, :: tensorflow::Input gamma, :: tensorflow::Input gamma_min, :: tensorflow::Input gamma_max, DataType out_type, float variance_epsilon, bool scale_after_normalization) |
공개 속성
공공 기능
QuantizedBatchNormWithGlobalNormalization
QuantizedBatchNormWithGlobalNormalization(
const ::tensorflow::Scope & scope,
::tensorflow::Input t,
::tensorflow::Input t_min,
::tensorflow::Input t_max,
::tensorflow::Input m,
::tensorflow::Input m_min,
::tensorflow::Input m_max,
::tensorflow::Input v,
::tensorflow::Input v_min,
::tensorflow::Input v_max,
::tensorflow::Input beta,
::tensorflow::Input beta_min,
::tensorflow::Input beta_max,
::tensorflow::Input gamma,
::tensorflow::Input gamma_min,
::tensorflow::Input gamma_max,
DataType out_type,
float variance_epsilon,
bool scale_after_normalization
)
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-27(UTC)
[null,null,["최종 업데이트: 2025-07-27(UTC)"],[],[],null,["# tensorflow::ops::QuantizedBatchNormWithGlobalNormalization Class Reference\n\ntensorflow::ops::QuantizedBatchNormWithGlobalNormalization\n==========================================================\n\n`#include \u003cnn_ops.h\u003e`\n\nQuantized Batch normalization.\n\nSummary\n-------\n\nThis op is deprecated and will be removed in the future. Prefer `tf.nn.batch_normalization`.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- t: A 4D input [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor).\n- t_min: The value represented by the lowest quantized input.\n- t_max: The value represented by the highest quantized input.\n- m: A 1D mean [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with size matching the last dimension of t. This is the first output from tf.nn.moments, or a saved moving average thereof.\n- m_min: The value represented by the lowest quantized mean.\n- m_max: The value represented by the highest quantized mean.\n- v: A 1D variance [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with size matching the last dimension of t. This is the second output from tf.nn.moments, or a saved moving average thereof.\n- v_min: The value represented by the lowest quantized variance.\n- v_max: The value represented by the highest quantized variance.\n- beta: A 1D beta [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with size matching the last dimension of t. An offset to be added to the normalized tensor.\n- beta_min: The value represented by the lowest quantized offset.\n- beta_max: The value represented by the highest quantized offset.\n- gamma: A 1D gamma [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with size matching the last dimension of t. If \"scale_after_normalization\" is true, this tensor will be multiplied with the normalized tensor.\n- gamma_min: The value represented by the lowest quantized gamma.\n- gamma_max: The value represented by the highest quantized gamma.\n- variance_epsilon: A small float number to avoid dividing by 0.\n- scale_after_normalization: A bool indicating whether the resulted tensor needs to be multiplied with gamma.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) result\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) result_min\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) result_max\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [QuantizedBatchNormWithGlobalNormalization](#classtensorflow_1_1ops_1_1_quantized_batch_norm_with_global_normalization_1a06c79c043a3a55b798944a5ae0a0f148)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` t, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` t_min, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` t_max, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` m, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` m_min, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` m_max, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` v, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` v_min, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` v_max, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta_min, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta_max, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` gamma, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` gamma_min, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` gamma_max, DataType out_type, float variance_epsilon, bool scale_after_normalization)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_quantized_batch_norm_with_global_normalization_1a84804acca133131cda9e9235b954f9af) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [result](#classtensorflow_1_1ops_1_1_quantized_batch_norm_with_global_normalization_1ab4d42bdea55b03a105681930993cf3d4) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [result_max](#classtensorflow_1_1ops_1_1_quantized_batch_norm_with_global_normalization_1aacfdd86eadc8f7972ff620b36692ef19) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [result_min](#classtensorflow_1_1ops_1_1_quantized_batch_norm_with_global_normalization_1a608925a87be94416e98c14506e98fb64) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### result\n\n```text\n::tensorflow::Output result\n``` \n\n### result_max\n\n```scdoc\n::tensorflow::Output result_max\n``` \n\n### result_min\n\n```scdoc\n::tensorflow::Output result_min\n``` \n\nPublic functions\n----------------\n\n### QuantizedBatchNormWithGlobalNormalization\n\n```gdscript\n QuantizedBatchNormWithGlobalNormalization(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input t,\n ::tensorflow::Input t_min,\n ::tensorflow::Input t_max,\n ::tensorflow::Input m,\n ::tensorflow::Input m_min,\n ::tensorflow::Input m_max,\n ::tensorflow::Input v,\n ::tensorflow::Input v_min,\n ::tensorflow::Input v_max,\n ::tensorflow::Input beta,\n ::tensorflow::Input beta_min,\n ::tensorflow::Input beta_max,\n ::tensorflow::Input gamma,\n ::tensorflow::Input gamma_min,\n ::tensorflow::Input gamma_max,\n DataType out_type,\n float variance_epsilon,\n bool scale_after_normalization\n)\n```"]]