Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
fluxo tensor:: ops:: Área de redimensionamento
#include <image_ops.h>
Redimensione images
para size
usando interpolação de área.
Resumo
As imagens de entrada podem ser de diferentes tipos, mas as imagens de saída são sempre flutuantes.
O intervalo de valores de pixel da imagem de saída pode ser ligeiramente diferente do intervalo da imagem de entrada devido à precisão numérica limitada. Para garantir um intervalo de saída, por exemplo [0.0, 1.0]
, aplique tf.clip_by_value
à saída.
Cada pixel de saída é calculado primeiro transformando a pegada do pixel no tensor de entrada e, em seguida, calculando a média dos pixels que cruzam a pegada. A contribuição de um pixel de entrada para a média é ponderada pela fração de sua área que cruza a área ocupada. É o mesmo que INTER_AREA do OpenCV.
Argumentos:
- escopo: um objeto Escopo
- imagens: 4-D com forma
[batch, height, width, channels]
. - size: = Um tensor 1-D int32 de 2 elementos:
new_height, new_width
. O novo tamanho das imagens.
Atributos opcionais (veja Attrs
):
- alinhar_corners: se verdadeiro, os centros dos 4 pixels dos cantos dos tensores de entrada e saída são alinhados, preservando os valores nos pixels dos cantos. O padrão é falso.
Retorna:
-
Output
: 4-D com forma [batch, new_height, new_width, channels]
.
Atributos públicos
Funções públicas
nó
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operador::tensorflow::Saída
operator::tensorflow::Output() const
Funções estáticas públicas
Alinhar cantos
Attrs AlignCorners(
bool x
)
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2025-07-27 UTC.
[null,null,["Última atualização 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::ResizeArea Class Reference\n\ntensorflow::ops::ResizeArea\n===========================\n\n`#include \u003cimage_ops.h\u003e`\n\nResize `images` to `size` using area interpolation.\n\nSummary\n-------\n\n[Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input) images can be of different types but output images are always float.\n\nThe range of pixel values for the output image might be slightly different from the range for the input image because of limited numerical precision. To guarantee an output range, for example `[0.0, 1.0]`, apply `tf.clip_by_value` to the output.\n\nEach output pixel is computed by first transforming the pixel's footprint into the input tensor and then averaging the pixels that intersect the footprint. An input pixel's contribution to the average is weighted by the fraction of its area that intersects the footprint. This is the same as OpenCV's INTER_AREA.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- images: 4-D with shape `[batch, height, width, channels]`.\n- size: = A 1-D int32 [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) of 2 elements: `new_height, new_width`. The new size for the images.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/resize-area/attrs#structtensorflow_1_1ops_1_1_resize_area_1_1_attrs)):\n\n- align_corners: If true, the centers of the 4 corner pixels of the input and output tensors are aligned, preserving the values at the corner pixels. Defaults to false.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 4-D with shape `[batch, new_height, new_width, channels]`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ResizeArea](#classtensorflow_1_1ops_1_1_resize_area_1a48c3b130fbd05acaed9512549485f012)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` images, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` size)` ||\n| [ResizeArea](#classtensorflow_1_1ops_1_1_resize_area_1ac1b5d48c5c77399d5198780d905281d7)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` images, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` size, const `[ResizeArea::Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/resize-area/attrs#structtensorflow_1_1ops_1_1_resize_area_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_resize_area_1a5cb2a40837fb9d975e2ca454469e5cac) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [resized_images](#classtensorflow_1_1ops_1_1_resize_area_1a64b25c97b7028b2b4c93978f2e957ad4) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_resize_area_1abdc62a6906daefaa326cda016f8fbb0c)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_resize_area_1a6e7fba9df05a54b4e0de2d079fa03403)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_resize_area_1a15a700424a492dfe07a1777ddc6146bd)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|\n| [AlignCorners](#classtensorflow_1_1ops_1_1_resize_area_1ae8ffc21c407e98bddb149275984ed3cf)`(bool x)` | [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/resize-area/attrs#structtensorflow_1_1ops_1_1_resize_area_1_1_attrs) |\n\n| ### Structs ||\n|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::ResizeArea::Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/resize-area/attrs) | Optional attribute setters for [ResizeArea](/versions/r2.3/api_docs/cc/class/tensorflow/ops/resize-area#classtensorflow_1_1ops_1_1_resize_area). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### resized_images\n\n```scdoc\n::tensorflow::Output resized_images\n``` \n\nPublic functions\n----------------\n\n### ResizeArea\n\n```gdscript\n ResizeArea(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input images,\n ::tensorflow::Input size\n)\n``` \n\n### ResizeArea\n\n```gdscript\n ResizeArea(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input images,\n ::tensorflow::Input size,\n const ResizeArea::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### AlignCorners\n\n```text\nAttrs AlignCorners(\n bool x\n)\n```"]]