컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
텐서플로우:: 작전:: SparseSegmentSqrtN
#include <math_ops.h>
N의 sqrt로 나눈 텐서의 희소 세그먼트를 따라 합계를 계산합니다.
요약
N은 축소되는 세그먼트의 크기입니다.
사용 예는 tf.sparse.segment_sum
참조하세요.
인수:
- 범위: 범위 개체
- 인덱스: 1차원 텐서.
segment_ids
와 순위가 동일합니다. - 세그먼트_ID: 1차원 텐서. 값은 정렬되어야 하며 반복될 수 있습니다.
보고:
-
Output
: 세그먼트 수인 크기 k
를 갖는 차원 0을 제외하고는 데이터와 동일한 모양을 갖습니다.
공개 속성
공공 기능
마디
::tensorflow::Node * node() const
operator::tensorflow::Input() const
연산자::텐서플로우::출력
operator::tensorflow::Output() const
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-27(UTC)
[null,null,["최종 업데이트: 2025-07-27(UTC)"],[],[],null,["# tensorflow::ops::SparseSegmentSqrtN Class Reference\n\ntensorflow::ops::SparseSegmentSqrtN\n===================================\n\n`#include \u003cmath_ops.h\u003e`\n\nComputes the sum along sparse segments of a tensor divided by the sqrt of N.\n\nSummary\n-------\n\nN is the size of the segment being reduced.\n\nSee `tf.sparse.segment_sum` for usage examples.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- indices: A 1-D tensor. Has same rank as `segment_ids`.\n- segment_ids: A 1-D tensor. Values should be sorted and can be repeated.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Has same shape as data, except for dimension 0 which has size `k`, the number of segments.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseSegmentSqrtN](#classtensorflow_1_1ops_1_1_sparse_segment_sqrt_n_1a40f8ad324c1d7f4dd4c3f768b107dc39)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` data, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` segment_ids)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_segment_sqrt_n_1ac6e04b8ae49c040d4fb78539251f732c) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_sparse_segment_sqrt_n_1ad4bf36c9267e5d6245c5b1d143049272) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_sparse_segment_sqrt_n_1ad30c396ef181cd74984b1d23ff3bdee3)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_sparse_segment_sqrt_n_1adbc1ac76f231ca09d1ba5df15369c510)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_sparse_segment_sqrt_n_1aba2d284339055dbd154009532a171823)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### SparseSegmentSqrtN\n\n```gdscript\n SparseSegmentSqrtN(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input data,\n ::tensorflow::Input indices,\n ::tensorflow::Input segment_ids\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]