コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
テンソルフロー::作戦::適用RMSProp
#include <training_ops.h>
RMSProp アルゴリズムに従って「*var」を更新します。
まとめ
このアルゴリズムの高密度実装では、grad が 0 であっても ms と mom は更新されますが、このスパース実装では、grad が 0 である反復では ms と mom は更新されないことに注意してください。
平均二乗 = 減衰 * 平均二乗 + (1-減衰) * 勾配 ** 2 デルタ = 学習率 * 勾配 / sqrt(平均二乗 + イプシロン)
ms <- rho * ms_{t-1} + (1-rho) * grad * grad mom <- 勢い * mom_{t-1} + lr * grad / sqrt(ms + epsilon) var <- var - mom
引数:
- スコープ:スコープオブジェクト
- var: Variable() から取得する必要があります。
- ms: Variable() からのものである必要があります。
- mom: Variable() からのものである必要があります。
- lr: スケーリング係数。スカラーでなければなりません。
- rho: 減衰率。スカラーでなければなりません。
- イプシロン: リッジ項。スカラーでなければなりません。
- grad: グラデーション。
オプションの属性 ( Attrs
を参照):
- use_locking:
True
の場合、var、ms、および mom テンソルの更新はロックによって保護されます。それ以外の場合、動作は未定義ですが、競合が少なくなる可能性があります。
戻り値:
コンストラクターとデストラクター |
---|
ApplyRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad)
|
ApplyRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad, const ApplyRMSProp::Attrs & attrs) |
パブリック属性
公共機能
ノード
::tensorflow::Node * node() const
operator::tensorflow::Input() const
演算子::tensorflow::出力
operator::tensorflow::Output() const
パブリック静的関数
ロックを使用する
Attrs UseLocking(
bool x
)
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-07-26 UTC。
[null,null,["最終更新日 2025-07-26 UTC。"],[],[],null,["# tensorflow::ops::ApplyRMSProp Class Reference\n\ntensorflow::ops::ApplyRMSProp\n=============================\n\n`#include \u003ctraining_ops.h\u003e`\n\nUpdate '\\*var' according to the RMSProp algorithm.\n\nSummary\n-------\n\nNote that in dense implementation of this algorithm, ms and mom will update even if the grad is zero, but in this sparse implementation, ms and mom will not update in iterations during which the grad is zero.\n\nmean_square = decay \\* mean_square + (1-decay) \\* gradient \\*\\* 2 Delta = learning_rate \\* gradient / sqrt(mean_square + epsilon)\n\nms \\\u003c- rho \\* ms_{t-1} + (1-rho) \\* grad \\* grad mom \\\u003c- momentum \\* mom_{t-1} + lr \\* grad / sqrt(ms + epsilon) var \\\u003c- var - mom\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- var: Should be from a Variable().\n- ms: Should be from a Variable().\n- mom: Should be from a Variable().\n- lr: Scaling factor. Must be a scalar.\n- rho: Decay rate. Must be a scalar.\n- epsilon: Ridge term. Must be a scalar.\n- grad: The gradient.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/apply-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_apply_r_m_s_prop_1_1_attrs)):\n\n- use_locking: If `True`, updating of the var, ms, and mom tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Same as \"var\".\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ApplyRMSProp](#classtensorflow_1_1ops_1_1_apply_r_m_s_prop_1a590f878f7698fa0f56a0b5226d658855)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ms, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mom, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rho, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` momentum, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad)` ||\n| [ApplyRMSProp](#classtensorflow_1_1ops_1_1_apply_r_m_s_prop_1a4d5ef1aee8f989dbbe2c16e3538482b2)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ms, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mom, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rho, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` momentum, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, const `[ApplyRMSProp::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/apply-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_apply_r_m_s_prop_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_apply_r_m_s_prop_1a412619ace9b4ff26ec14ae0ecfb8ac11) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [out](#classtensorflow_1_1ops_1_1_apply_r_m_s_prop_1a72a4daee4e9ef1d2a3f3d4a088ed010f) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_apply_r_m_s_prop_1a82fe90ad87c393e443f8459e9b0158db)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_apply_r_m_s_prop_1aabbb7630a5cd439e4694eda0021d694d)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_apply_r_m_s_prop_1a4e664360fbdde8291f80a08b2347fdf0)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|\n| [UseLocking](#classtensorflow_1_1ops_1_1_apply_r_m_s_prop_1ae0d5824bd2a81852e1e2185346adb9c3)`(bool x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/apply-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_apply_r_m_s_prop_1_1_attrs) |\n\n| ### Structs ||\n|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::ApplyRMSProp::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/apply-r-m-s-prop/attrs) | Optional attribute setters for [ApplyRMSProp](/versions/r1.15/api_docs/cc/class/tensorflow/ops/apply-r-m-s-prop#classtensorflow_1_1ops_1_1_apply_r_m_s_prop). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### out\n\n```text\n::tensorflow::Output out\n``` \n\nPublic functions\n----------------\n\n### ApplyRMSProp\n\n```gdscript\n ApplyRMSProp(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input ms,\n ::tensorflow::Input mom,\n ::tensorflow::Input lr,\n ::tensorflow::Input rho,\n ::tensorflow::Input momentum,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad\n)\n``` \n\n### ApplyRMSProp\n\n```gdscript\n ApplyRMSProp(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input ms,\n ::tensorflow::Input mom,\n ::tensorflow::Input lr,\n ::tensorflow::Input rho,\n ::tensorflow::Input momentum,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad,\n const ApplyRMSProp::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n```"]]