컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
텐서플로우:: 작전:: 팽창2D
#include <nn_ops.h>
4차원 input
및 3차원 filter
텐서의 회색조 팽창을 계산합니다.
요약
input
텐서는 [batch, in_height, in_width, depth]
모양을 갖고 filter
텐서는 [filter_height, filter_width, depth]
모양을 갖습니다. 즉, 각 입력 채널은 자체 구조화 기능을 사용하여 다른 입력 채널과 독립적으로 처리됩니다. output
텐서의 모양은 [batch, out_height, out_width, depth]
입니다. 출력 텐서의 공간 차원은 padding
알고리즘에 따라 다릅니다. 현재는 기본 "NHWC" data_format
만 지원합니다.
자세히 말하면, 회색조 형태학적 2차원 팽창은 최대합 상관관계입니다( conv2d
와의 일관성을 위해 미러링되지 않은 필터를 사용함).
output[b, y, x, c] =
max_{dy, dx} input[b,
strides[1] * y + rates[1] * dy,
strides[2] * x + rates[2] * dx,
c] +
filter[dy, dx, c]
최대 풀링은 필터의 크기가 풀링 커널 크기와 같고 모두 0을 포함하는 특별한 경우입니다.
이중성에 대한 참고 사항: filter
에 의한 input
확장은 반사 filter
에 의한 -input
침식의 부정과 같습니다.
인수:
- 범위: 범위 개체
- 입력:
[batch, in_height, in_width, depth]
모양의 4D. - 필터:
[filter_height, filter_width, depth]
모양의 3D입니다. - strides: 입력 텐서의 각 차원에 대한 슬라이딩 윈도우의 보폭입니다. 다음과 같아야 합니다:
[1, stride_height, stride_width, 1]
. - rate: 심방 형태학적 확장에 대한 입력 보폭입니다. 다음과 같아야 합니다:
[1, rate_height, rate_width, 1]
. - padding: 사용할 패딩 알고리즘 유형입니다.
보고:
-
Output
: [batch, out_height, out_width, depth]
모양의 4D.
공개 속성
공공 기능
마디
::tensorflow::Node * node() const
operator::tensorflow::Input() const
연산자::텐서플로우::출력
operator::tensorflow::Output() const
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-26(UTC)
[null,null,["최종 업데이트: 2025-07-26(UTC)"],[],[],null,["# tensorflow::ops::Dilation2D Class Reference\n\ntensorflow::ops::Dilation2D\n===========================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes the grayscale dilation of 4-D `input` and 3-D `filter` tensors.\n\nSummary\n-------\n\nThe `input` tensor has shape `[batch, in_height, in_width, depth]` and the `filter` tensor has shape `[filter_height, filter_width, depth]`, i.e., each input channel is processed independently of the others with its own structuring function. The `output` tensor has shape `[batch, out_height, out_width, depth]`. The spatial dimensions of the output tensor depend on the `padding` algorithm. We currently only support the default \"NHWC\" `data_format`.\n\nIn detail, the grayscale morphological 2-D dilation is the max-sum correlation (for consistency with `conv2d`, we use unmirrored filters): \n\n```scdoc\noutput[b, y, x, c] =\n max_{dy, dx} input[b,\n strides[1] * y + rates[1] * dy,\n strides[2] * x + rates[2] * dx,\n c] +\n filter[dy, dx, c]\n```\n\n\u003cbr /\u003e\n\nMax-pooling is a special case when the filter has size equal to the pooling kernel size and contains all zeros.\n\nNote on duality: The dilation of `input` by the `filter` is equal to the negation of the erosion of `-input` by the reflected `filter`.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: 4-D with shape `[batch, in_height, in_width, depth]`.\n- filter: 3-D with shape `[filter_height, filter_width, depth]`.\n- strides: The stride of the sliding window for each dimension of the input tensor. Must be: `[1, stride_height, stride_width, 1]`.\n- rates: The input stride for atrous morphological dilation. Must be: `[1, rate_height, rate_width, 1]`.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 4-D with shape `[batch, out_height, out_width, depth]`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Dilation2D](#classtensorflow_1_1ops_1_1_dilation2_d_1aa7fba6ab148288fc230175c265483ff3)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, const gtl::ArraySlice\u003c int \u003e & strides, const gtl::ArraySlice\u003c int \u003e & rates, StringPiece padding)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_dilation2_d_1a50e0232a57e1ec03bc56803f2e2ae58e) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_dilation2_d_1ae68b7f48c9fc91ffdef4e18bd34625f0) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_dilation2_d_1a965eb807b87a9ac84ef8533e6da72768)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_dilation2_d_1ae1a45a55c3092ef319c027a697e3e667)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_dilation2_d_1a451d294669723935c6618946259273c3)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Dilation2D\n\n```gdscript\n Dilation2D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input filter,\n const gtl::ArraySlice\u003c int \u003e & strides,\n const gtl::ArraySlice\u003c int \u003e & rates,\n StringPiece padding\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]