Оптимизируйте свои подборки
Сохраняйте и классифицируйте контент в соответствии со своими настройками.
тензорный поток:: опс:: РазвернутьDims
#include <array_ops.h>
Вставляет размерность 1 в форму тензора.
Краткое содержание
Учитывая input
тензор, эта операция вставляет размерность 1 на axis
индекса измерения формы input
. axis
индекса размера начинается с нуля; если вы укажете отрицательное число для axis
оно будет отсчитываться назад от конца.
Эта операция полезна, если вы хотите добавить измерение партии к одному элементу. Например, если у вас есть одно изображение формы [height, width, channels]
, вы можете сделать его пакетом из 1 изображения с помощью expand_dims(image, 0)
, что создаст форму [1, height, width, channels]
.
Другие примеры:
# 't' is a tensor of shape [2]
shape(expand_dims(t, 0)) ==> [1, 2]
shape(expand_dims(t, 1)) ==> [2, 1]
shape(expand_dims(t, -1)) ==> [2, 1]
# 't2' is a tensor of shape [2, 3, 5]
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]
Эта операция требует, чтобы:
-1-input.dims() <= dim <= input.dims()
Эта операция связана с squeeze()
, которая удаляет измерения размером 1.
Аргументы:
- область: объект области.
- ось: 0-D (скаляр). Указывает индекс измерения, по которому можно расширить форму
input
. Должно быть в диапазоне [-rank(input) - 1, rank(input)]
.
Возврат:
-
Output
: содержит те же данные, что и input
, но к его форме добавлено дополнительное измерение размером 1.
Публичные атрибуты
Общественные функции
узел
::tensorflow::Node * node() const
operator::tensorflow::Input() const
оператор::tensorflow::Выход
operator::tensorflow::Output() const
Если не указано иное, контент на этой странице предоставляется по лицензии Creative Commons "С указанием авторства 4.0", а примеры кода – по лицензии Apache 2.0. Подробнее об этом написано в правилах сайта. Java – это зарегистрированный товарный знак корпорации Oracle и ее аффилированных лиц.
Последнее обновление: 2025-07-26 UTC.
[null,null,["Последнее обновление: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::ExpandDims Class Reference\n\ntensorflow::ops::ExpandDims\n===========================\n\n`#include \u003carray_ops.h\u003e`\n\nInserts a dimension of 1 into a tensor's shape.\n\nSummary\n-------\n\nGiven a tensor `input`, this operation inserts a dimension of 1 at the dimension index `axis` of `input`'s shape. The dimension index `axis` starts at zero; if you specify a negative number for `axis` it is counted backward from the end.\n\nThis operation is useful if you want to add a batch dimension to a single element. For example, if you have a single image of shape `[height, width, channels]`, you can make it a batch of 1 image with `expand_dims(image, 0)`, which will make the shape `[1, height, width, channels]`.\n\nOther examples:\n\n\n```scdoc\n# 't' is a tensor of shape [2]\nshape(expand_dims(t, 0)) ==\u003e [1, 2]\nshape(expand_dims(t, 1)) ==\u003e [2, 1]\nshape(expand_dims(t, -1)) ==\u003e [2, 1]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# 't2' is a tensor of shape [2, 3, 5]\nshape(expand_dims(t2, 0)) ==\u003e [1, 2, 3, 5]\nshape(expand_dims(t2, 2)) ==\u003e [2, 3, 1, 5]\nshape(expand_dims(t2, 3)) ==\u003e [2, 3, 5, 1]\n```\n\n\u003cbr /\u003e\n\nThis operation requires that:\n\n\n`-1-input.dims() \u003c= dim \u003c= input.dims()`\n\nThis operation is related to `squeeze()`, which removes dimensions of size 1.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- axis: 0-D (scalar). Specifies the dimension index at which to expand the shape of `input`. Must be in the range `[-rank(input) - 1, rank(input)]`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Contains the same data as `input`, but its shape has an additional dimension of size 1 added.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ExpandDims](#classtensorflow_1_1ops_1_1_expand_dims_1ae2cff3dc910140a50446ed380848baef)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` axis)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_expand_dims_1aefcdcc72ed92eb8f0975a90ca998bb71) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_expand_dims_1abc828c5e90fdd61142ffd01878f9f95a) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_expand_dims_1a85ce8553584a8b3a50345d93f0f03b52)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_expand_dims_1aabc0c1aba83330412277a5b6e6f2c04e)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_expand_dims_1a280db99846027451637ac5d7e7a9d67e)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### ExpandDims\n\n```gdscript\n ExpandDims(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input axis\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]