Оптимизируйте свои подборки
Сохраняйте и классифицируйте контент в соответствии со своими настройками.
тензорный поток:: опс:: МатрицаДиаг
#include <array_ops.h>
Возвращает пакетный диагональный тензор с заданными пакетными значениями диагонали.
Краткое содержание
Учитывая diagonal
, эта операция возвращает тензор с diagonal
и всем остальным, дополненным нулями. Диагональ вычисляется следующим образом:
Предположим, что diagonal
имеет k
измерений [I, J, K, ..., N]
, тогда на выходе получается тензор ранга k+1
с размерами [I, J, K, ..., N, N]`, где:
output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n]
.
Например:
# 'diagonal' is [[1, 2, 3, 4], [5, 6, 7, 8]]
and diagonal.shape = (2, 4)
tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0]
[0, 2, 0, 0]
[0, 0, 3, 0]
[0, 0, 0, 4]],
[[5, 0, 0, 0]
[0, 6, 0, 0]
[0, 0, 7, 0]
[0, 0, 0, 8]]]
which has shape (2, 4, 4)
Аргументы:
- область: объект области.
- диагональ: ранг
k
, где k >= 1
.
Возврат:
-
Output
: ранг k+1
с output.shape = diagonal.shape + [diagonal.shape[-1]]
.
Публичные атрибуты
Общественные функции
узел
::tensorflow::Node * node() const
operator::tensorflow::Input() const
оператор::tensorflow::Выход
operator::tensorflow::Output() const
Если не указано иное, контент на этой странице предоставляется по лицензии Creative Commons "С указанием авторства 4.0", а примеры кода – по лицензии Apache 2.0. Подробнее об этом написано в правилах сайта. Java – это зарегистрированный товарный знак корпорации Oracle и ее аффилированных лиц.
Последнее обновление: 2025-07-26 UTC.
[null,null,["Последнее обновление: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::MatrixDiag Class Reference\n\ntensorflow::ops::MatrixDiag\n===========================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns a batched diagonal tensor with a given batched diagonal values.\n\nSummary\n-------\n\nGiven a `diagonal`, this operation returns a tensor with the `diagonal` and everything else padded with zeros. The diagonal is computed as follows:\n\nAssume `diagonal` has `k` dimensions `[I, J, K, ..., N]`, then the output is a tensor of rank `k+1` with dimensions \\[I, J, K, ..., N, N\\]\\` where:\n\n`output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n]`.\n\nFor example:\n\n\n```text\n# 'diagonal' is [[1, 2, 3, 4], [5, 6, 7, 8]]\n```\n\n\u003cbr /\u003e\n\n\n```text\nand diagonal.shape = (2, 4)\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\ntf.matrix_diag(diagonal) ==\u003e [[[1, 0, 0, 0]\n [0, 2, 0, 0]\n [0, 0, 3, 0]\n [0, 0, 0, 4]],\n [[5, 0, 0, 0]\n [0, 6, 0, 0]\n [0, 0, 7, 0]\n [0, 0, 0, 8]]]\n```\n\n\u003cbr /\u003e\n\n\n```perl6\nwhich has shape (2, 4, 4)\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- diagonal: Rank `k`, where `k \u003e= 1`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Rank `k+1`, with `output.shape = diagonal.shape + [diagonal.shape[-1]]`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [MatrixDiag](#classtensorflow_1_1ops_1_1_matrix_diag_1a2b263945a55c830cec2aa8e732ad4c37)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` diagonal)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_matrix_diag_1a2a3f9fd08f8b6b8b5209a62bc2c0e4e4) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_matrix_diag_1aba2480ed932f279c48fc6028f6be7a92) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_matrix_diag_1aa1db7faefb57b9fee4eddaee99c3a5a3)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_matrix_diag_1ae38fc37ca0a5a229e9c9d3f827ebfa6d)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_matrix_diag_1aaaad00f636d2ad7be0fd131133b79006)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### MatrixDiag\n\n```gdscript\n MatrixDiag(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input diagonal\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]