컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
텐서플로우:: 작전:: 미러패드
#include <array_ops.h>
미러링된 값으로 텐서를 채웁니다.
요약
이 작업은 지정한 paddings
에 따라 미러링된 값으로 input
채웁니다. paddings
[n, 2]
형태의 정수 텐서입니다. 여기서 n은 input
의 순위입니다. input
의 각 차원 D에 대해 paddings[D, 0]
해당 차원의 input
내용 앞에 추가할 값 수를 나타내고, paddings[D, 1]
해당 차원의 input
내용 뒤에 추가할 값 수를 나타냅니다. copy_border
true인 경우(각각 false인 경우) paddings[D, 0]
및 paddings[D, 1]
은 모두 input.dim_size(D)
(또는 input.dim_size(D) - 1
)보다 크지 않아야 합니다.
출력의 각 차원 D의 패딩된 크기는 다음과 같습니다.
paddings(D, 0) + input.dim_size(D) + paddings(D, 1)
예를 들어:
# 't' is [[1, 2, 3], [4, 5, 6]].
# 'paddings' is [[1, 1]], [2, 2]].
# 'mode' is SYMMETRIC.
# rank of 't' is 2.
pad(t, paddings) ==> [[2, 1, 1, 2, 3, 3, 2]
[2, 1, 1, 2, 3, 3, 2]
[5, 4, 4, 5, 6, 6, 5]
[5, 4, 4, 5, 6, 6, 5]]
인수:
- 범위: 범위 개체
- input: 패딩할 입력 텐서입니다.
- 패딩: 패딩 크기를 지정하는 2열 행렬입니다. 행 개수는
input
순위와 동일해야 합니다. - 모드:
REFLECT
또는 SYMMETRIC
. 반사 모드에서는 패딩된 영역에 테두리가 포함되지 않지만 대칭 모드에서는 패딩된 영역에 테두리가 포함됩니다. 예를 들어, input
[1, 2, 3]
이고 paddings
[0, 2]
이면 출력은 반사 모드에서 [1, 2, 3, 2, 1]
이고 [1, 2, 3, 3, 2]
입니다. [1, 2, 3, 3, 2]
대칭 모드에서.
보고:
공개 속성
공공 기능
마디
::tensorflow::Node * node() const
operator::tensorflow::Input() const
연산자::텐서플로우::출력
operator::tensorflow::Output() const
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-26(UTC)
[null,null,["최종 업데이트: 2025-07-26(UTC)"],[],[],null,["# tensorflow::ops::MirrorPad Class Reference\n\ntensorflow::ops::MirrorPad\n==========================\n\n`#include \u003carray_ops.h\u003e`\n\nPads a tensor with mirrored values.\n\nSummary\n-------\n\nThis operation pads a `input` with mirrored values according to the `paddings` you specify. `paddings` is an integer tensor with shape `[n, 2]`, where n is the rank of `input`. For each dimension D of `input`, `paddings[D, 0]` indicates how many values to add before the contents of `input` in that dimension, and `paddings[D, 1]` indicates how many values to add after the contents of `input` in that dimension. Both `paddings[D, 0]` and `paddings[D, 1]` must be no greater than `input.dim_size(D)` (or `input.dim_size(D) - 1`) if `copy_border` is true (if false, respectively).\n\nThe padded size of each dimension D of the output is:\n\n\n`paddings(D, 0) + input.dim_size(D) + paddings(D, 1)`\n\nFor example:\n\n\n```text\n# 't' is [[1, 2, 3], [4, 5, 6]].\n# 'paddings' is [[1, 1]], [2, 2]].\n# 'mode' is SYMMETRIC.\n# rank of 't' is 2.\npad(t, paddings) ==\u003e [[2, 1, 1, 2, 3, 3, 2]\n [2, 1, 1, 2, 3, 3, 2]\n [5, 4, 4, 5, 6, 6, 5]\n [5, 4, 4, 5, 6, 6, 5]]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: The input tensor to be padded.\n- paddings: A two-column matrix specifying the padding sizes. The number of rows must be the same as the rank of `input`.\n- mode: Either `REFLECT` or `SYMMETRIC`. In reflect mode the padded regions do not include the borders, while in symmetric mode the padded regions do include the borders. For example, if `input` is `[1, 2, 3]` and `paddings` is `[0, 2]`, then the output is `[1, 2, 3, 2, 1]` in reflect mode, and it is `[1, 2, 3, 3, 2]` in symmetric mode.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The padded tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [MirrorPad](#classtensorflow_1_1ops_1_1_mirror_pad_1ade8674bcac38c7b92e49227402b3aeab)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` paddings, StringPiece mode)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_mirror_pad_1a20963b11eba097a4a292d10fe912fe9f) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_mirror_pad_1acddc2951f705b38786a6c90517025bbd) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_mirror_pad_1ac601ae413e0e24707abfe6bd6e000e3e)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_mirror_pad_1a27d0164d159236fcb1639d0dd7604c31)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_mirror_pad_1a682f1e9bfbad14b9b9529733b71dba26)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### MirrorPad\n\n```gdscript\n MirrorPad(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input paddings,\n StringPiece mode\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]